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Abstract
The article is drafted from the perspective of the marketing

manager who must minimize carrying costs of a salesperson that share
multiple products. We have tackled this simulation problem using a
Hamiltonian cycle associated to transport network conceptual reduced
to a graph. Identification of optimal solution was achieved through the
implementation of Branch and Bound heuristic algorithm in the C++
programming language. The article is developed on two directions: a
conceptual approach to clarify the algorithm used and its source code
implementation.
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1. Introduction

One of the major problems faced by marketing managers is that of trans-
portation of goods. Because carriers ask the round-trip payment, some com-
panies decide to transport the goods through their commercial agents. To de-
termine the route with the lowest cost we use the Branch and Bound method
for finding optimal solutions. A branch-and-bound algorithm searches the en-
tire space of candidate solutions, throwing out large parts of the search space
by using previous estimates on the quantity being optimized.

2. General description

Assuming a graph G = (V, A) consisting of edges and nodes. On the set
of edges is defined a function d which identify the lowest cost d : A→ Q+. A
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graph can be represented as an n×n square matrix, where n = |V |, having the
dij elements made of the weights associated to the edges and taking values in
the set of Q+∪{∞}. For any element dvv with v ∈ V , the relation dvv =∞ [1]
is true. Given the costs matrix associated with the graph, where dij = dji, ∀i, j
, we say that the transport problem is symmetric[2] .

To identify the optimum in transport problems using decision trees, it
gives an objective function L to be minimized in relation to a set of solutions
S, corresponding to the optimal browsing of the graph. Heuristic algorithm
implies browsing the possible recursive routes, testing in relation to the simple
average of the cheapest pairs of adjacent edges related links to all nodes in the
graph, according to: C = 1

2

∑
∀v ∈ V

If L(S)<C then you need to explore other possible solutions and iden-
tifying the optimal way. In the following example is given a weighted graph
(fig. 1) and wishes to establish average cost for any chosen route.

Figure 1: Weighted graph with five nodes

Table 1 shows that the average cost associated with any possible routes
is 42/2, this means 21[3]. We will further test the possible routes in relation
to this average cost. It results that the number of weighted edges taken into
account is of 22n(n	1) order, so the degree of complexity of binary trees analysis

is O(22n
2

+ (n− 1)!), according to[1] .

3. Case study

A courier has to deliver many packages in four cities. It is desirable
to optimize transportation costs so the salesperson can visit every town once
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Table 1: The cheapest two adjacent edges

Node The cheapest two adjacent edges Total cost
a (a,b), (a,d) 11
b (b,c), (b,d) 7
c (c,b), (c,d) 5
d (d,c), (d,b) 6
e (e,b), (e,a) 13
- - Total = 42

on the shortest route. The cities and possible routes between them can be
treated as a weighted graph. Associated transport costs are listed in the cost
matrix. The situation comes down to a classic transportation problem, the
optimal route forming a Hamiltonian graph which will be identified using the
algorithm presented above.

Assume the following cost matrix – array of roads – relating to the trans-
port problem for the four cities where the symbol ∞ it is the lack of links
between the cities to be visited.

D =

 ∞ 6 8 5
10 ∞ 4 9
9 3 ∞ 2
7 7 5 ∞


A first element of the solution of the transport problem is to define an

objective function that allows calculating the reduced cost matrix. Low cost
matrix gives the additional costs associated with identifying the link between
the two cities for which the cost is minimal. This minimal cost results from
the summation of the lower cost of departure from each town, plus the lowest
entry cost in every city. Optimal function returns the minimum cost obtained
by running a subset of dij , for any route must aim at entry and exit of each
city exactly once. First, it reduces the line 1. The smallest value of line 1 is
the minimum cost to leave the city 1. Line 1 is reduced with its smallest value,
in this case 5, reducing it in every element of the line. The smallest value (5)
is added at the lower limit. After cutting the line 1, we keep in mind the cost
5 and get the following matrix:

D =

 ∞ 1 3 0
10 ∞ 4 9
9 3 ∞ 2
7 7 5 ∞


Then, we cut the line 2 with its smallest value, 4 in this case, subtracting

4 from each element of the line 2. We keep in mind the cost 4 and get the
following matrix:
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D =

 ∞ 1 3 0
6 ∞ 0 5
9 3 ∞ 2
7 7 5 ∞


Then, we cut the line 3 with its smallest value, 2 in this case, subtracting

2 from each element of the line 3. We keep in mind the cost 2 and get the
following matrix:

D =

 ∞ 1 3 0
6 ∞ 0 5
7 1 ∞ 0
7 7 5 ∞


Then, we cut the line 4 with its smallest value, 5 in this case, subtracting

5 from each element of the line 4. We keep in mind the cost 5. Minimum
intermediate cost is 5 + 4 + 2 + 5 = 16, and the resulting reduced matrix is:

D =

 ∞ 1 3 0
6 ∞ 0 5
7 1 ∞ 0
2 2 0 ∞


Reducing rows takes into account only the cost of leaving each city. Re-

duction columns include the lowest cost to get in every city. Reduction of
columns is similar to reduction of lines. A column is reduced with its smallest
value, by subtracting this value from each element of the column. The smallest
value of the first column is 2, so we subtract 2 from each element of the first
column. We keep in mind the cost 2, which is added to the costs calculated
above 16 + 2 = 18. We get the following matrix:

D =

 ∞ 1 3 0
4 ∞ 0 5
5 1 ∞ 0
0 2 0 ∞


Then we reduce the column 2 with its smallest value, 1 in this case,

subtracting 1 from each element of the column 2. We keep in mind the cost 1,
which is added to the costs calculated above 18 + 1 = 19. We get the following
matrix:

D =

 ∞ 0 3 0
4 ∞ 0 5
5 0 ∞ 0
0 1 0 ∞


The remaining columns are already reduced, because they already con-

tain a 0. Therefore we obtain the optimal route of transportation – the cost
being 19 currency units – it remains to determine the order of cities.
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4. Source code implementation

Program code associated with reducing the cost matrix rows and columns
below was procedural, structured as follows:

Stage 1 . Initializing array values of roads:
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
printf("d[%d][%d]=",i,j);
scanf("%d",&c);
d[i][j]=c;
}

Stage 2. Determination of the minimum link costs per rows:
for(int i=1;i<=n;i++)
{
min[i]=d[i][1];
for(int j=2;j<=n;j++)
{
if (d[i][j]<min[i]) min[i]=d[i][j];
}
}

Stage 3. Reduced matrix per rows after minimum values obtained in the
previous step:
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]-=min[i];

Stage 4. Testing dij pairs against null in order to reduce the matrix on
columns:
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if (d[j][i]==0) break;
else if (j==n)
col[++k]=i;

Stage 5. Reducing matrix on columns after determining the minimum
link cost:
for(int l=1;l<=k;l++)

min[l]=d[1][col[l]];
for(int i=2;i<=n;i++)
if (d[i][col[l]]<min[l]) min[l]=d[i][col[l]];

for(int l=1;l<=k;l++)
for(int i=1;i<=n;i++)
d[i][col[l]]-=min[l];
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Step 6. Display the final result:
for(int i=1;i<=n;i++)
{
printf("|");
for(int j=1;j<=n;j++)
{
printf("%d ",d[i][j]);
if (j==n) printf("|\n");
} }

where:
n - matrix dimension
d[10][10] - matrix vector
c - the cost beetwen two nodes
min[10] - minimum values per rows/columns
col[10] - reduced matrix columns that doesn’t contain any null value
k=0 - index variable.

The result of the program execution for a cost matrix

C =

 ∞ 2 5 1
4 ∞ 9 4
2 8 ∞ 9
2 3 6 ∞


is shown in Figure 2:

Figure 2: The result of Hamilton.exe

We observe that it is advisable to avoid the inclusion of the links that have
different values from zero in the reduced matrix. Basically, this will remove
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the redundant links between cities, once chosen the optimal in-out route of the
city. There are 7 records containing 0 in the reduced matrix above. It starts
with the link (2,3) having minimum weight 0. If the route from the second
city to the third is included in the optimal solution, then the rest of the links
between them can be deleted, because we leave the second city once and we
will enter once into the third one. We get the following matrix:

D =

 ∞ 0 ∞ 0
∞ ∞ ∞ ∞
5 0 ∞ 0
0 1 ∞ ∞


Once removed pairs d2j and di3 , ∀i, j we can also eliminate the possibility

of circular link (3,2) or d32, as follows:

D =

 ∞ 0 ∞ 0
∞ ∞ ∞ ∞
5 ∞ ∞ 0
0 1 ∞ ∞


There is only one optimal route for departure from town 3 and entering

town 4 so we identify the optimal route for exit from the fourth city. This
is determined only by the link d41 so remains only to eliminate all unefficient
pairs d4j and di4,∀i, j coresponding for leaving the fourth city and entering
the first.

D =

 ∞ 0 ∞ 0
∞ ∞ ∞ ∞
∞ ∞ ∞ 0
∞ ∞ ∞ ∞


We obtain the optimal path so the company will go through four towns

in the following order: City 1 → City 2 → City 3 → City 4 → City 1.

Conclusions

This paper provides the marketing manager a methodology and necessary
tools to reduce transport costs for carried goods. This solution addressed a
classic transport problem, defining an optimal function based on reducing
the distance between two places and a restriction which prevents multiple
transports through the same city.
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