
Soft Computing Strategies in Multiobjective Optimization

ALBEANU, Grigore
Faculty of Mathematics and Informatics

Spiru Haret University
g.albeanu.mi@spiruharet.ro

BURTSCHY, Bernard
Informatique et Réseaux, Paris, France

Telecom ParisTech
bernard.burtschy@telecom-paristech.fr

POPENŢIU-VLĂDICESCU, Florin
University of Oradea, ”UNESCO Chair” Department

Romanian Academy of Scientists, Bucharest, Romania
popentiu@imm.dtu.dk

Abstract
Traditional optimization methods applied to solve real life problems

can experience local or unstable behaviour. Researchers have proposed
recently non-traditional search and optimization methods based on nat-
ural phenomena like natural evolution, social behaviour, and annealing.
This paper describes a meta-algorithm for multiobjective optimization.
Finally, it is remarked that migration algorithms and bees’ algorithms
are good candidates for solving multiobjective optimization problems.

Keywords: multiobjective optimization, evolution strategies,
natural evolution, social behaviour

AMS Classification: 90C99

1. Introduction

Traditional optimization methods applied to solve real life problems can
experience local or unstable behavior [8]. Researchers have proposed recently
non-traditional search and optimization methods based on natural phenomena
[5, 13, 14, 15]: the annealing in metallurgy – Simulated Annealing ; the
process of natural evolution – Genetic Algorithms, Differential Evolution,
Tabu Search, Scatter Search, and Self-Organizing Migrating Algorithms; na-
ture inspired social behaviour – Particle Swarm Optimization and Ant
Colony Optimization. These algorithms have been used successfully for solv-
ing both the single and multiobjective optimization problems. This study

31



considers natural evolution and social behaviour approaches in order to iden-
tify suitable procedures for multiobjective optimization.

2. Natural evolution inspired approaches

Evolution strategies are local search methods for continuous search spaces
using simple (individual) or advanced (population) solutions [10]. When us-
ing only one parent the strategy produces one offspring by adding randomly
created values with zero mean and identical standard deviation. The resulting
individual is evaluated and compared to the original solution (using the val-
ues of the objective function) and the better one survives to be used for the
creation of the next solution. The advanced version use m solutions (individ-
uals) as parent population. A set of n new solutions (offspring population) is
created in iteration. The next parent population is creating by choosing the m
best individual from the union of the parent and offspring population, or only
from the offspring population when n is greater than m. Two mechanisms
are used. The selection mechanism has an intensifying character while recom-
bination has both diversifying and intensifying character. Popular selection
schemes are proportionate selection (the expected number of copies a solution
has in the next population is proportional to its fitness) and tournament se-
lection (a tournament between s randomly chosen different individuals is held
and the one with the highest fitness is added to the mating pool P. After K
tournaments of size s the mating pool is filled. The mating pool P consists of
all solutions which are chosen for recombination).

Genetic operators and migration loops are some examples of evolution
strategies. A genetic based searching mechanism, as evolutionary procedure,
starts with a set of solutions called population. One solution, in this set, is
called a chromosome. The search is guided by a survival of the fit-test prin-
ciple. The search proceeds for a number of generations. For each generation,
based on the fitness function, the fit-test solution will be selected to form a
new population. During the process, three main operators can be applied:
reproduction, crossover, and mutation. Reproduction process consists in the
combination of the evaluation and selection activities. It copies an individual
from one generation to the next. Crossover takes two or more chromosomes
and by swapping information between them will produce one or more chromo-
somes (the so called children). Mutation is the process that randomly modifies
a part of chromosome’s information. The whole cycle can be repeated along
a number of generations until certain termination criteria are met (the num-
ber of generations is maximal admitted, a high fitness value is obtained or,
the simulation time hits its upper boundary). This chain has to be adapted
depending on the particular problem to be solved [15].

A special case of evolution strategy is based on migration [16] and is
incorporated in self-organizing migrating algorithms (SOMAs) which work on
a population of candidate solutions in loops called migration loops. The initial
population is a random sampling over the search space. In each loop, the
population is evaluated and the solution with the highest fitness becomes the

32



leader L. In one migration loop, all individuals, apart from the leader, traverse
the input space in the direction of the leader. For mutation, SOMA uses a
parameter to achieve perturbation, this parameter being created before an
individual starts its migration over the search space, and is used to define the
final movement. SOMA approaches proved a good behaviour when used to
solve real problems [2, 3, 4].

To solve opt f(x) where x belongs to D (the search space) by SOMA, a
procedure consisting of five steps is required [10]:

1. Set up the control parameters of the algorithm: PS - the size of popula-
tion, N - the dimension of the search space (the number of components
of the solution), ST - the number of steps for one migration, PL - the
path length (the distance toward leading item), the step size (the gran-
ularity of sampling the search space) = PL/ST , PP - the perturbation
parameter, and ML - the number of migration loops;

2. Generate (using a uniform distribution over the search space) the initial
population, and for each individual the objective functions are evaluated.
The individuals are generated in a bounded domain according to

λ0i,j = λmin
j + αi,j

(
λmax
j − λmin

j

)
,

where the j-th component belongs to
[
λmin
j , λmax

j

]
, i = 1, 2, . . . , PS, and

αi,j is a uniform distributed number in the unit interval [0, 1].

3. According to the values of the objective functions the solution with the
highest fitness becomes the leader L, and the individuals (others than
leader) are migrated to new positions, traversing the input space in the
direction of the leader; any individual will travel, in a number of steps, a
certain distance (path length) towards the leader (AllToOne strategy) or
towards all individuals (AllToAll strategy). The operators used during
migration are perturbation (a special kind of mutation), and movement
(not a genetic crossover but in place of). Perturbation depends on a vec-
tor β generated according to the following rule: if γj < PP then βj := 1
else βj := 0 (j = 1, . . . , N). The perturbation vector β is generated
before the individual starts to migrate, with γj uniform distributed in
[0, 1]. The movement operator (of the individual λp towards the individ-
ual λq), during the ith migration loop, produces an individual denoted
by λτ(s) and defined, for every (j = 1, 2, . . . , N), as:

λτ(s),j(i) = λp,j(i− 1) + βj(λq,j(i− 1)− λp,j(i− 1))
s

ST
PL,

where s is the index of the movement step.

4. Test for the termination condition (the maximum number of migration
loops ML is reached; no improvements during last migration step, or no
significant improvement comparing against the leader), and if necessary
continues with step 3;

33



5. Output the set of solutions.

A characteristic of the algorithm consists in the memory property of in-
dividuals: during a movement, each individual remembers the best found po-
sition. The advantage of using operators like perturbation and movement is to
traverse the input space in the direction of the leader(s) to avoid the deadlock
of the algorithm in the local optimum, and reach the global optimum by faster
convergence [17, 18].

3. Nature inspired approaches

Social optimization strategies are inspired by the observation of the be-
haviour of swarms. Simple individuals cooperate through self-organization,
without any form of central control. The Bees Algorithm (BA) approach is
used to illustrate the social optimization paradigm [9, 13]. The algorithm per-
forms a kind of neighbourhood search combined with random search, according
to the following steps:

0. Let t = 0

1. Initialize population with random solutions: The algorithm starts with
the NSB scout bees being placed randomly in the search space:

{Xi(t)|i = 1, 2, . . . , NSB} .

2. Evaluate the fitness of the population and chose the best individual
Xbest(t).

3. Repeat the following steps:

3.1. Select the m best sites for neighbourhood search.

3.2. Select e sites from m having the best quality.

3.3. Each site of the e sites conducts neighbourhood searching for nep
times assisted by nep bees.

3.4. Each site of the m − e sites conducts neighbourhood searching for
nsp times assisted by nsp bees.

3.5. Each site of the NSB −m conducts search only one time.

3.6. Recombine a new population.

3.7. Evaluate the fitness of the population and chose the best individual
Xbest(t).

3.8. Let t := t+ 1 until the stopping criterion is fulfilled.

4. Output Xbest(t), and the fitness of Xbest(t).

34



with the following parameters: number of scout bees (NSB), number of sites
selected out of NSB visited sites (m), number of best sites out of m selected
sites (e), number of bees recruited for best e sites (nep), number of bees
recruited for the other (m − e) selected sites (nsp), initial size of patches
(ngh) which includes site and its neighbourhood. A stopping criterion (the
maximum number of iterations) is necessary.

If the size of the solution vector is D then

1. The population is initialized by the following rule: For i := 1 to NSB
do for j := 1 to D do

Xi,j(t) =
(
UXi,j(t)− LXi,j(t)

)
∗ RAND +L Xi,j(t),

where LXi,j and UXi,j are the lower, respective the upper limits for
the jth component of the solution vector, and RAND is generated as
uniformly distributed in [0, 1].

2. A new individual is generated according to the following steps (AllToOne
strategy):

a) Vi,j(t) = Xi,j(t) + αi,j(Xi,j(t)−Xk,j(t)), where αi,j is random and
uniformly distributed in [−1, 1], and k is the index of best individ-
ual, k 6= i, identified by computing the probabilities

probl = Fitl/
NSB∑
j=1

Fitj ,

and choosing k as

probk = max probl|l = 1, 2, . . . , NSB.

b) If the fitness of Vi is higher than the fitness of Xi then Xi is replaced
by Vi, otherwise remains unchanged.

4. Multiobjective evolutionary optimization

The multi-objective optimization is the process of simultaneously opti-
mization of two or more conflicting objectives subject to certain constraints.
A collection of case studies is given in [1]. Constructing a single aggregate
objective function is the basic approach. If the objective functions have dif-
ferent weights then the decision is essentially subjective. Classical and non-
traditional optimizers were proposed for multiobjective optimization. Cur-
rently most evolutionary optimizers apply Pareto-based ranking schemes. The
concept of Pareto dominance is of extreme importance in multiobjective op-
timization, especially where some or all of the objectives are mutually con-
flicting: maximize the system reliability under minimum costs. The Pareto

35



optimum, in general, gives not a single solution, but a set of solutions. Such
set is maintained using a database as described below. In the following, a
meta-algorithm for evolutionary multiobjective optimization is described and
experimental results are reported.

4.1. A meta-algorithm

The multi-objective version of evolutionary algorithms uses the concept
of the Pareto domination [9]: a solution A is said to dominate another solution
B if A is not worse than B in all objectives, and A is strictly better than B
in one objective at least. In order to manage the set of the non-dominated
solutions, a database DB should be used [6, 10]. The multiobjective procedure
is based on the following steps:

1) Setup the parameters of the algorithm (the size of DB, the maximum
number of evolution loops).

2) Generate the initial population and evaluate the objective functions for
each individual.

3) Search the current population for non-dominated solutions and register
them in DB.

4) Apply the AllToMany evolutionary procedure for every individual from
the current generation, evaluate the new solutions and update DB.

5) Test for the termination condition, and if necessary continues with step
4.

6) Select the non-dominated optimal solution from DB.

The new individuals are generated according to the following rule (All-
ToMany strategy):

Vi,j(t) = Xi,j(t) + αi,j(Xi,j(t)−Xk,j(t)),

where αi,j is random and uniformly distributed in [−1, 1], and k is the index
of individuals stored in DB. If the fitness of Vi is higher than the fitness of Xi

then Xi is replaced by Vi, otherwise remains unchanged.
The above algorithm can use both SOMA and BA approaches. How-

ever, other recombination strategies can be considered when inspiring accord-
ing to [7].

4.2. Experiments

In order to compare SOMA and BA algorithms the intuitionistic fuzzy
optimization problem described in [10, 11] was considered firstly in the soft-
ware reliability optimization framework. Starting from the architectural graph,

36



and using the intuitionistic fuzzy computation of the system reliability [12] and
its optimization, the results demonstrate the efficiency of both approaches, the
convergence being achieved after a small number of steps. However, the tuning
of the BA parameters requested more time than tuning SOMA parameters.

5. Conclusion

Recently, an increased interest in evolutionary optimization inspired by
nature was identified. Both migrating strategy algorithms and bees’ algo-
rithms are controlled random search approaches, the control being realized
over generations of individuals obtained by recombination rules. This paper
has described these approaches and presented a meta-algorithm for multiob-
jective optimization. Even difficult to calibrate the initial parameters, the
algorithm proved a good behaviour when applied for real industrial problems
concerning the complex systems reliability optimization.

References

1. Binh, T.T., A Multiobjective Evolutionary Algorithm. The Study Cases,
”Technical Report, Institute for Automation and Communication”, Berle-
ben, Germany, 1999.

2. Coelho, L.S., Self-Organizing Migrating Strategies Applied to Reliability-
Redundancy Optimization of Systems, ”IEEE Transactions on Reliabil-
ity”, 58(3), pp. 501–510, 2009.

3. Coelho, L.S., Self-Organizing Migration Algorithm Applied to Machining
Allocation of Clutch Assembly, ”Mathematics and Computers in Simu-
lation”, 80, pp. 427–435, 2009.

4. Coelho, L.S. and Alotto, P., Electromagnetic Optimization Using a Cul-
tural Self-Organizing Migrating Algorithm Approach Based on Normative
Knowledge, ”IEEE Transactions on Magnetics”, 45(3), pp. 1446–1449,
2009.

5. Gonzalez, T.F., Handbook of Approximation Algorithms and Metaheuris-
tics, ”Chapman & Hall/CRC”, 2007.

6. Kadlec, P. and Raida, Z., A Novel Multi-Objective Self-Organizing Mi-
grating Algorithm, ”Radioengineering” 20(4), 804–816, 2011.

7. Konak, A., Coit, D.W. and Smith, A.E., Multiobjective Optimization Us-
ing Genetic Algorithms. A Tutorial, ”Reliability Engineering and Sys-
tem Safety”, 91, pp. 992–1007, 2006.

8. Liu, G.P., Yang, J.B. and Whidborne, J.F., Multiobjective Optimisation
and Control, ”Research Studies Press LTD”, 2003.

9. Li, H., Liu, K. and Li, X., A Comparative Study of Artificial Bee Colony
Bees Algorithms and Differential Evolution on Numerical Benchmark
Problems, In: ”Cai, Z., Tong, H., Kang, Z., Liu, Y. (eds), Computa-
tional Intelligence and Intelligent Systems: Proceedings of ISICA 2010”,
Springer, 2010.

37



10. Madsen, H., Albeanu, G., Popentiu-Vladicescu, F. and Albu, R.-D.,
Optimal Reliability Allocation for Large Software Projects through Soft
Computing Techniques, ”Proceedings of PSAM 11 & ESREL 2012”, 25-
29 June 2012, Helsinki, Finland. 2012.

11. Madsen, H., Albeanu, G. and Popentiu-Vladicescu, F., An Intuitionistic
Fuzzy Methodology for Component-Based Software Reliability Optimiza-
tion, ”International Journal of Performability Engineering”, 8(1), pp.
67–76, 2012.

12. Mahapatra, G.S., Reliability Optimization in Fuzzy and Intuitionistic
Fuzzy Environment, ”Bengal Engineering and Science University, PhD
Thesis”, 2009.

13. Pham, D.T., Ghanbarzadeh, A., Koş, E., Otri, S., Rahim, S. and Zaidi,
M., The Bees Algorithm – A Novel Tool for Complex Optimisation Prob-
lems, In: ”Proceedings of IPROMS 2006”, pp. 454-461, 2006.

14. Rothlauf, F., Design of Modern Heuristics: Principles and Application,
”Springer”, Berlin, Heidelberg, 2011.

15. Spears, W.M., Evolutionary Algorithms. The Role of Mutation and Re-
combination, ”Springer”, 2000.

16. Zelinka, I. and Lampinen, J., SOMA – Self Organizing Migrating Algo-
rithm, ”Proceedings of the 6th International Conference on Soft Com-
puting (Mendel 2000)”, Brno, Czech Republic, 2000, pp. 177-187.

17. Zelinka, I., Lampinen, J. and Noulle, L., On the Theoretical Proof of
Convergence for a Class of SOMA Search Algorithms, ”Proceedings of
the 7th International Conference on Soft Computing (Mendel 2001)”,
Brno, Czech Republic, 2001, pp. 103-110.

18. Zelinka, I., SOMA – Self-Organizing Migrating Algorithm, In New op-
timization techniques in engineering, G.C. Onwubolu and B.V. Babu
(Eds), ”Springer”, Ch7, 2004.

38


