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Abstract
First, the paper presents in short algorithms for simulating some distri-
butions which are used in the paper. Then, some probability distributions
are introduced, which are mixtures between distributions of a minim and a
maxim of sequences of life data having Lomax (Pareto) or Weibull distri-
butions (called target distributions), mixed up with truncated geometric
or Poisson distributions. These distributions could be used to calculate
the reliability of multicomponent serial or parralel systems and particu-
larly for simulating such sistems. Apart from composition methods for
simulating these distributions, some other simulation algorithms,based on
inverse or rejection methods, are presented.
Keywords: distribution functions
ACM/AMS Classification: 62G30

1. INTRODUCTION

In [1,2,3] were introduced some mixtures of life data distributions, de-
riving from some known distributions, which involve mixtures with Poisson
distribution. Here we continue to introduce similar distributions which in-
volve further mixtures with Poisson distributions or geometric distributions.
More precisely, we consider a life time L having a target cummulative distri-
bution function (cdf) φ(x) and denote ϕ(x) its probability density function
(pdf). Hence ϕ(x) = φ′(x).

If L1, L2, ..., Ln are indepemdent and identicaly distributed (iid) random
variables, then, let us consider the extremum ranking variables, namely,

V = min
1≤i≤n

Li; W = max
1≤i≤n

Li. (1.1)

Note that the random variables V and W have the following cdf ′s respectively

φV (x) = (1− (1− φ(x))n; φW (x) = (φ(x))n (1.2)

and the correspondinjg pdf ′s are

ϕV (x) = nϕ(x)(1− φ(x))n−1; ϕW (x) = nϕ(x)(φ(x))n−1. (1.3)
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In this paper we consider as target distributions the Lomax(a, θ) and
the standard Weibull(ν) distributions. The sample size n is assummed to
be a discrete random variable N∗ which takes values N∗ = 1, 2, ... In the
following N∗ is either a truncated (on [1,∞)) Poissaon(λ) random variable,
or a truncated Geometric(p), 0 < p < 1 random variable. In the Poisson(λ)
case, the truncated distribution is

P (N∗ = k) =
1

eλ−1
λk

k!
, λ > 0, k = 1, 2, ... (1.4)

and in the Geometric(p) case, the truncated distribution is

P (N∗ = k) = pqk−1, k = 1, 2..., 0 < p < 1, q = 1− p. (1.5)

The mixed distribution will be obtained as distributions of V or W with
random n = N∗ (i.e. truncated Poisson(λ) or Geometric(p)).

1.1 Simulation of discrete distributions involved

• The Poisson(λ) distribution of the discrete random variable N is

P (N = k) =
λk

k!
e−λ, k = 0, 1, 2, ... (1.6)

There are several known ways of simulating this distribution. One con-
venient way is based on the following property:

If n ∈ N+ and p, 0 < p < 1 are selected such as n→∞ (i.e. n is large)
and λ = n.p then Poisson(λ) distribution can be approximated with the
Binomial Bin(n, p) distribution.

The Bin(n, p) distrinution is in the forrm

P (N = k) = Cknp
kqn−k, q = 1− p, k = 0, 1, ..., n (1.7)

As n is large it is also known that

The random variable

Z =
N − np
√
npq

(1.8)

is approximately distributed as normal N(0, 1)

As the normal N(0, 1) random variable can be easily simulated (see
for instance [4],p.68-69 and & 3.5.4), the random variable N can be
simulated as

Generate Z → N(0, 1);

Take N = {np+ Z
√
npq}.

(The notation {x}, ∀x ∈ R means the closest integer from x).
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• The Geometric Geom(p) (0 < p < 1) random variable N has the follow-
ing distribution

P (N = k) = pqk, k = 0, 1, ...., q = 1− p (1.9)

Note that the cummulative geometric distribution function is

F (x) = P (N < x) =
x−1∑
i=1

pqi = 1− qx, x− 0, 1, 2, .... (1.10)

therefore, the simulationn of N in this case can be done by the inverse
method as follows

Generate U an uniform (0, 1) random number;

Take N =
[
log(U)
log(q)

]
.

(The [x],∀x ∈ R, denotes the integer part of x).

The described algorithms simulate discrete random variables N having
Poisson(λ) or Geometric Geom(p) distributions. For the purpose of this
paper, we need to simulate truncated random variables N∗ = N,N >
0. Any of these random variables are easily genereted by the following
rejection algorithm.

repeat

Generate N → Poisson(λ) (or Geom(p));

until N > 0;

Take N∗ = N.

1.2 Simulation of discrete distributions involved

As concerns Weibull distribution it is enough to consider only the stan-
dard Weibull(0, 1, ν) distribution having the pdf in the form

f(x, ν) =

{
0 if x ≤ 0
νxν−1e−x

ν
if x > 0.

(1.11)

The corresponding cdf is

F (x, ν) =

{
0 if x ≤ 0
1− e−xν if x > 0,

(1.12)

and its inverse is the solution of the equation F (x) = U i.e.

F−1(x) = (− logU)
1
ν , for 0 < U < 1. (1.12′)
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The Lomax(a, θ) distribution has the pdf in the form

f(x, a, θ) =

{
0 if x ≤ 0

aθ
(1+θx)a+1 if x > 0. (1.13)

The Lomax cdf is

F (x, a, θ) =

{
0 if x ≤ 0
1− 1

(1+θx)a if x > 0 (1.14)

and its inverse (the solution of equation F (x) = U) is

F−1(U) =
1

θ

(
(

1

U
)
1
a − 1

)
, for 0 < U < 1. (1.14′)

If U is an uniform random number over (0, 1), then the target distributions
are simply simulated by the inverse method as

X = F−1(U),

where F−1 is either given by (1.12’) or by (1.14’).

2. RESULTS: MIXED DISTRIBUTIONS OBTAINED

The pdf ′s of mixed distributions are in the form

fV (x) =
∞∑
k=1

P (N∗ = k)kϕ(x)(1− φ(x))k−1, (2.1)

fW (x) =
∞∑
k=1

P (N∗ = k)kϕ(x)(φ(x))k−1. (2.2)

2.1 The case of truncated Poisson(λ) distribution

For the Poisson distribution Kus [2] derived a new distribution (of W ),
when the target distribution is extreme value distribution.In [1], Lupu derived
distributions on V and W when the target distribution is exponential Exp(λ).

Here, we assume first that the target distribution is Weibull(0, 1, ν), ν >
0, i.e a Weibull standard which has the pdf

ϕ(x) = νxν−1e−x
ν
, x > 0. (2.3)
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Therefore, for the variable V we have

f
(PW )
V (x) =

∞∑
k=1

1

eλ − 1

λk

k!
kνxν−1e−x

ν
e−(k−1)x

ν
=

=
λ

eλ − 1
νxν−1e−x

ν
∞∑
k=1

(λe−x
ν
)k−1

(k − 1)!

which, after some calculations, gives finally

f
(PW )
V (x) =

λ

eλ − 1
νxν−1e−x

ν
eλe

−xν
. (2.4)

(The upper script (PW ) means Poisson − Weibull and the lower script V
refers to the random variable in (1.1)).

One can see that the corresponding cdf is

F
(PW )
V (x) =

1

eλ − 1
(eλ − eλe−x

ν

). (2.5)

For the random variable W we have

f
(PW )
W (x) =

∞∑
i=1

1

eλ − 1

λk

k!
kνxν−1e−x

ν
(1− e−xν )k−1

which after some calculation gives

f
(PW )
W (x) =

λ

eλ − 1
νxν−1e−x

ν
∞∑
i=1

λ(1− e−xν )k−1

(k − 1)!

i.e.

f
(PW )
W (x) =

λ

eλ − 1
νxν−1e−x

ν
eλ(1−e

−xν ). (2.6)

(Here again, the upper script (PW ) refers to Poisson−Weibull mixture and
the lower script W refers to the random variable W in (1.1)).

In this case the cdf is

F
(PW )
W (x) =

eλe
−xν − 1

eλ − 1
. (2.7)
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2.2 The case of a truncated Geometric(p) distribution

The calculations bellow use the following elementary result
Lemma 1 If 0 < ρ < 1 then

∞∑
k=1

kρk−1 =
1

(1− ρ)2
.

In this case we deal only with Weibull(0, 1, ν) target distribution and
with Pareto(a, θ)(Lomax(a, θ)) target distribution.

• In the case of Geometric(p) distribution, the random variable V in (1.1)
when the target distribution is Weibull has the pdf

f
(GW )
V (x) =

∞∑
i=1

pqk−1kνxν−1e−x
ν
(e−x

ν
)k−1.

Using Lemma 1, after some calculation one obtain

f
(GW )
V (x) = pνxν−1

e−x
ν

(1− qe−xν )2
. (2.8)

(Here the meaning of upper script (GW) is obvious).

The corresponding cdf is

F
(GW )
V (x) =

1

q
− p

q
.

1

1− e−xν
. (2.8′)

The mixture of geometric distribution with random variable W when
the target distribution is Weibull has the pdf

f
(GW )
W (x) = p

∞∑
i=1

kνxν−1e−x
ν
qk−1(1− e−xν )k−1

which after some calculations based on Lemma 1, gives

f
(GW )
W (x) = pνxν−1e−x

ν 1

(p+ qe−xν )2
. (2.9)

After some calculations the corresponding cdf is

F
(GW )
W (x) =

p

q

1

p+ qe−xν
− p

q
. (2.9′)
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• Let us consider now the Lomax(a, θ) target distribution which has the
pdf

f(x) =
aθ

(1 + θx)a+1
, x > 0 a > 0, θ > 0. (2.10)

The mixture distribution of the Geometric(p) with the random variable
V, when the target distribution is Lomax(a, θ) has the pdf

f
(GL)
V (x) =

∞∑
i=1

pqk−1.
aθ

(1 + θx)a+1

k

((1 + θx)a)k−1
.

Using Lemma 1, after saome calculation we obtain

f
(GL)
V (x) =

paθ(1 + θx)a−1

[(1 + θx)a − q]2
, x > 0. (2.11)

The cdf of f
(GL)
V (x) is (after some calculations!)

F
(GL)
V (x) = 1− p

(1 + θx)a − q
, x > 0. (2.12)

The mixture distribution of the Geometric(p) with the random variable
W, when the target distribution is Lomax(a, θ) has the pdf

f
(GL)
W (x) =

∞∑
i=1

pqk−1
kaθ

(1 + θx)a+1

(
1− 1

(1 + θx)a

)k−1
, x > 0.

Using again Lemma 1, after some calculations, we obtain the final form

f
GL)
W (x) = paθ

(1 + θx)a−1

(p(1 + θx)a + q)2
, x > 0. (2.13)

The corresponding cdf of f
(GL)
W (x) is

F
(GL)
W (x) = 1− 1

p(1 + θx)a + q
, x > 0. (2.14)

3. SIMULATION OF INTRODUCED DISTRIBUTIONS

3.1 Direct simulation as composition algorithms

Since all distributions are mixture distributions, they can be simulated
by composition algorithms in the form
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begin
Simulate n a samplimg value of N∗;
Simulate L1, L2, ..., Ln having the target distribution;
Calculate V (or W ) as in (1.1);
Take X = V (or X = W )
end.

The randon variable X produced by the algorithm has the corresponding
mixture distribution. Implementation of all algorithms does not imply any
difficulty.

3.2 Simulation based on the inverse method

For all introduced distributions the cdf ′s were specified.Therefore simu-
lation of any random variable X which has the cdf F (x) is done according to
the following inverse algorithm

begin
Simulate a random number U uniform over (0,1);
Calculate X = F−1(U);
end.

(In the algorithm, F−1 is the inverse function of F ).
In the following we list-up the inverse F−1 of cdf ′s introduced in section

2.

1. The inverse of the cdf F = F
(PW )
V is

F−1(U) = {− log[log[eλ − U(eλ − 1)]
1
λ ]}

1
ν . (3.1)

2. The inverse of the cdf F = F
(PW )
W is

F−1(U) = {− log[log[1 + U(eλ − 1)]
1
λ ]}

1
ν . (3.2)

3. The inverse of the cdf F = F
(GW )
V is

F−1(U) = [− log

(
q(1− U)

1− qU

)
]
1
ν . (3.3)

4. The inverse of the cdf F = F
(GW )
W is

F−1(U) =

[
− log(

q(1− U)

p+ qU

] 1
ν

. (3.4)
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5. The inverse of the cdf F = F
(GL)
V is

F−1(U) =
1

θ

[(
1− qU
1− u

) 1
a

− 1

]
. (3.5)

6. The inverse of the cdf F = F
(GL)
W is

F−1(U) =
1

θ

[(
1− qU
1− U

) 1
a

− 1

]
. (3.6)

For implementation of these simulation procedures, it must take care to
avoid calculation of the log function when its argument is close to zero (i.e.
< 0.0000001!).

3.3 Simulation based on rejection method

In this subsection we use the following known result [4,5]
Theorem 1 Assume that X is a random variable to be simulated and its

pdf is f(x). Assume that Y is another random variable for wich a simulation
method is known and its pdf is h(x), such that functions f and g have the
same support. Assume also that exists a finite constant α > 0, such as

f(x)

h(x)
≤ α. (3.7)

Let U be an uniform (0,1) variate stochastically independent from Y. Then,
the conditional pdf of Y given that

0 < U ≤ f(Y )

αh(y)
, (3.8)

is f. (Therefore X is simulated by Y which satisfies condition (3.8))
From this Theorem results the following general rejection algorithm for

simulating the random variable X :

Algorithm R

repeat
Generate U an uniform random number over (01);
Generate Y having pdf h, such as Y and U are stochastically indepen-

dent;

until U ≤ f(Y )
αh(Y ) ;(This is the condition C).

Take X = Y.
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It is shown that the probability to come out from the cycle repeat...
until (i.e the acceptance probability), is

pa =
1

α
, (3.9)

therefore 1 < α <∞ and the algorithm is fast if pa is close to one.
In the following we apply this theorem for simulating, by the rejection

method, the distributions introduced in section 2. In fact will be presented
only important features necessary to implement Algorithm R for each dis-
tribution, namely:

- The enveloping density h(x);

- The constant α;

- The acceptance probability pa;

- The simpliffied expression of the condition C in the cycle repeat... until
C.

• A note regarding selection of the enveloping density:we will try (and it
will work!) as enveloping densities the densities corresponding to target
distributions.

a. The distribution F
(PW )
V . The enveloping density selected is the

standard Weibull(0, 1, ν) density

h(x) = νxν−1e−x
ν
, x > 0, ν > 0. (3.10)

The enveloping constant is

α =
λeλ

eλ − 1
(3.10′)

and the acceptance probability is

pa =
eλ − 1

λeλ
. (3.10”)

The simplified form of the predicate C is

C = true, iff, U ≤ e−λ+λe−Y
ν

. (3.10′′′)

b. The distribution F
(PW )
W . The enveloping density is the same as

in a.; the constant α and the acceptance probability are also the
same. The final form of the predicate C is

C = true, iff, U ≤ e−λ+λ(1−e−Y
ν
). (3.11)

Even if the probability pa is the same for cases a. and b., the
rejection algorithm in the case a. is faster because the condition C
in this case requires a smaller time-complexity.
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c. The distribution F
(GL)
V . The enveloping density h(x) is also given

by (3.10); the constant α and the probability pa are

α =
1

p
, pa = p. (3.12)

The final form of the predicate C is

C = true, iff U ≤ p2

(1− qe−Y ν )2
. (3.12′)

d. The distribution F
(GW )
W . The enveloping density h(x) is also

(3.10); The constants α and pa are the same as in case c. and
the predicate C is

C = true, iff U ≤ p2

(p+ qe−Y ν )2
. (3.13).

Note that complexity ot the two rejection algorithms (cases c. and
d.) differs only by the time necessary to evaluate predicates C.

e. The distribution F
(GL)
V . The enveloping density selected is the

Lomax(a, θ) density, i.e.

h(x) =
aθ

(1 + θx)a+1
, x > 0, a, θ > 0. (3.14)

The enveloping constant α and the acceptance probability are

α =
1

p
, pa = p, (3.14′)

and the final form of the predicate C is

C = true, iff U ≤ p2aθ(1 + θY )2a

[(1 + θY )a − q]2
. (3.14′′)

f. he distribution F
(GL)
W ..The enveloping density is also Lomax(a, θ)

and the constants α, pa are the same as in the case e., i.e. are in
the form (3.14’). The final form of the predicate C is

C = true, iff U ≤ p2aθ(1 + θY )2a

[p(1 + θY )a + q]2
. (3.15)

If the Weibull and Lomax random variates are simulated by the
inverse methods, then the final form of predicates could be further
simplified, thus reducing execution time.
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• Note that the moments of mixed distributions introduced exist and
they could be simply calculated.
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