QUEUEING MODELS FOR COMPUTING SYSTEMS
MANAGEMENT AND MAINTENANCE

MADSEN, Henrik
DTU Informatics, Denmark
hmi@imm.dtu.dk

POPENTIU-VLADICESCU, Florin
University of Oradea, UNESCO IT Chair
popentiug@imm.dtu.dk

ALBEANU, Grigore
Spiru Havet University, Bucharest, Romania
g.albeanu.mi@spiruharet.ro

Abstract

Software development is a special activity typically carried out by individuals
that work best on their own. Recently, it is full accepted that software products
require documentation, testing, quality assurance and a complete understanding of
customer requirements. Such activities are better carried under an efficient software
management and by maintenance actions which do not increase the overall system
cost. This paper presents some queueing models, successfully used for havdware
service systems, 1n ovder o provide appropriate tools in the decision process related
to resource allocation for developing, testing, and upgrading ov maintaining the
software under curvent exploitation.

Keywords: quensing models, software management

AMS classification: 62P30

1. Introduction

Software predicting quality and reliability can be, especially at this moment,
a quite difficult job. According to [1], "the increasing software complexity and the
cost and time constraints against software reliability maximization for the most
software projects have made mandatory the ussage of a standardized approach in
producing such items". In this context, for achieving a high capability maturity
level, more actions must be taken for the improving the management process. What
kind of actions? What is the mathematical base? It is clear that modeling science is
called to help.

From a practical point of view, hardware quality evaluation is relatively well
incorporated in the design process whereas software quality evaluation is limited
even though early and recent published work shows the continuous growing of the
software cost in the total system cost. The optimal resource allocation during
software developing and maintenance period, in order to minimize the software

21

cost. The activities of the software maintenance, from the quality assurance point
of view, include the analysing fault reports and enhancement features, verifying
and fixing defects after delivery of a software product to customers. Mainly, the
software quality is measured by counting the faults or designing defects found in
one of the software components (medules). Such an approach helps only the
software developers, not the managers. From the manager point of view some
questions are important enough: How many professionals in software developing
are needed? How large must be the testing team? How large will be the
maintenance team after delivering to the customers? A simulation model could
help the manager to find the answer. A useful strategy based on queueing theory, in
the hardware maintenance context, was reported in [2]. Different successfully
application areas of queueing theory could be found in [3], [4], [5] and [7], to
mention only some references on the subject. Recently a queueing approach is
proposed in the software case [6]. Unfertunately things are mere complex, and the
moedeling science must provide more.

This paper considers some queueing models with immediate application to
help the management and maintenance teams in their work. The material
introduces the fundamental terminology and notations, in the next section, while
the third section describes a general fixing time distribution model. Concluding
remarks review the advantages and drawbacks of the queueing approach for the
software field.

2. General remarks

QQueues are common entities in our economical, technological and social life.
The elements of a queueing system are: "customers" from a "population” or source
which enter to receive some type of services, and the "service facility" having one
or more servers. The word "customer” is used in generic form. In the framework of
software management and maintenance, a customer could be a fault repert. The
mission of the service facility will be the removing (fixing) the reported faults. The
basic protocol asks the developer to take the faults from the queue according to the
queue principle in order to investigate and fix them. In this interpretation, the
queue consists in a database whose records are individual fault reports, while the
service facility is represented by the maintenance team or the validation team.

In any type of system modeled as a queueing system some trade-offs can be
considered. One aspect concerns the situation when the service facility has a large
capacity that queues rarely form. In this case some unused capacities there exists.
When the servers are always busy, the length of the queue will increase and a large
time interval will be necessary to remove all the faults.

In the following, standard notations which are common in the context of the
queueing systems are presented. Let ¢ be the number of identical servers, or the
number of individuals in the maintenance team. If A is the average arrival rate of
fault reports and p is the average service rate per server for fixing bugs (removing
faults), then the fraction A/(cp) describes the server utilization, that means the
fraction of time the maintenance team is busy. Let also N{t) be the random
variable describing the number of fault reports in the system at time t, Ny(t) be the
random wvariable giving the number of reports waiting in the queue at time t, and
N:(t) be the random variable describing the number of bugs in fixing state at time t.
When the system meets the steady-state conditions then N, Ny and N; there are

22

random variables describing the corresponding number of items. Obviously N(t) =
Ng(t) + Ny(t) and N = Ny + N;. If L is the expected steady state number of fault
reports in the system (E[N]), L, is the expected steady state number of fault
reports in the queue, not including those in fixing process (E[Ny]) and L, = E[N;],
then L = L, + L. Similarly, for the random variable s describing the fixing time, for
the random variable T describing interarrival time and the random wvariable w
describing the total time a fault report spends in the system (w = q + s, where q is
the time a fault report spends in the waiting line before start the fixing), if W =
E[w], Wy = E[q], W, = E[s] then W = W, + W, A commen distribution function
appropriate for a random service is the exponential distribution: Wy(t) = P[s<t] = 1
- exp(-ut), with u being the average fixing rate. Other good fixing distributions are
Erlang-k, constant and hyperexponential, the last one appropriate when the
variance is large enough relative to the mean. The squared coefficient of variation
(Ex = Var[X)/E[X]* is a useful parameter to measure the character of probability
distributions used above. For constant variables & = 0; in the case of the
exponential distribution & = 1, and if & = 1/k (k integer) then the distribution is
Erlang-k. For the hyperexponential distribution &, >1.

Some queueing models assumes only a single server, that is only one team or
one developer, others are based on ¢ identical servers. However, every queueing
model has a standard structure and will be described using the Kendall notfation:
A/B//K/m/D, where A describes the interarrival time distribution, B is the service
time distribution, ¢ is the number of servers, K is the system capacity {(maximum
number of fault reports simultaneously allowed), m is the source size, in general
difficult to estimate, and ID is the queue discipline, mainly in use the FCFS {First
Come First Served) strategy. The most general assumptions state that the system
has a general independent interarrival time ((GI) and is based on a general service
time distribution ((3). However, a simplified version can be used. The notation
M/M/1 describes a queueing model based on one server, exponential interarrival
time and exponential service time distribution.

Each developer's service rate is estimated based on his capabilities, skills, the
professional experience and based on the characteristics of the product under
service. If a team is composed by n members and p; is the full rate of fixing faults
by the ith developer and p; is the proportional ratic of time spends in the fixing
process, the fixing fault of a whele team is f = Z'ufpi . However, we must

i=0
differentiate between a team with n members (viewed like one server) and c servers
{(c teams).

One fundamental measure of queueing system performance is the traffic
intensity u = E[s]/E[t]. Since A = 1/E[1] and p = 1/E[s] the traffic intensity can also
be written as AE[s] or A/l The server utilization is given by p = uw/c. According to
Little [3], the following formulas hold: L. = AW, and L; = AW, Another useful
measure of a queueing system performance is the probability that there are n fault
reports in the queueing system, denoted by py.

For the basic queueing model M/M/1, with parameters A and p, p =
A/, the following performance indicators are available:
pm=P[N=n]=(1-pp"n=01,2,..;

23

L =E[N] = p/(1-p),

W = E[w] = L/A = E[s]/(1-p),

W, = W-E[s] = pE[sl/(1p),

Ly =p/(1-p) and p, = (1-MRAW)"

If p=1 (the number of fault reports is higher than the number of developers) a
queue overloading appears. There is only one developer or one team in the M/M/1
medel. A large number of developers is necessary to reduce the fixing time for a
set of faults. In the case of the M/M/c model, with parameters A and p (u = A/),
and c identical servers then p = u/c and

c-1,,n c -1
B S U
: { ! c!(l—p)]

For n from 0 to ¢ it is valid that

pid

U

Pn= ;Po’

but for n = ¢ the value is
u}’i

Pn= Crcn_c pO'

The primary measures of system performance Lg, Wq, W, and L are given

Ly= 2 Py~ Lh W= W,+ U, and L= AW,

T odd-p)

Example 1. A software house receives fault reports from many testers, the
arrival pattern being random (Poisson), with an average of 12 fault reports per day
and has a team which provides an exponential fixing service with an average time
of 30 minutes; the team is available 8 hours per day. The team utilization ratio is p
= 3/4. The average time a fault report spends in the fixing department is W =
E[s]/(1-p) = 2h, the average number of fault reports waiting for fixing are L, =
2.25, the average number of fault reports in nonempty queues E[N, | N, > 0] =
1/(1-p) = 4. Also, the average waiting time to start fixing is W, = pE[s]/(1-p) =
1.5h.

If additional fixing teams are considered, say ¢ = 2, then the server utilization
p is 3/8. In this case it is obtained: py = 5/11, L, = 27/20 and the average waiting
time in the queue, Wy is 0.18h.

It is clear now that such models can help the software managers. If they are
able to estimate the fault report rate and the fault fixing rate, after computing the
performance coefficients, it is possible to decide about speeding up the fault-fixing
rate using especially trained developers or increase the number of people in the
developing team. The analyse presented in [6] shows that increasing the number of
the developers do not improve as much as the manager wants the expected
response time in order to serve optimally the clients. This agree with the
requirement for continuously improving the testing/developing process in order to
have an adequate capability maturity for the software testing and fixing. Different
aspects on the software quality from the management point of view can be found in
[1].

24

3. General time distribution based models

In the following we consider the M/(G/1 queueing system, that means a
queueing system which has a Poisson input process with average value A and a
general service time distribution. Different fault reports have independent fixing
times.

Following [3], related to the steady state formulas for M/G/1 queueing
system, and using the above notations the performance characteristics have the
following expressions.

Letp, =P[N=n]=P[n fault reports in system], n =0, 1, 2, Then

Po = 1-p,

where

p =4 E[s],

P[developing team is busy] = P[N=>1] = p,

E[s%] sz[s]{ch

], according to the Pollaczek's formula,

T 2l-p) 1-pl 2

P (1+C?
Lq—E[Nq]—qu—l_p[2 W =W, +E[s]
and
L=FE[N] =1 W.

When the fixing time distribution is Erlang-k, then E[s”] = E[s]*(1+1/k). For a
constant fixing rate (code 1), E[s?] = E[s]".

Example 2. Let us consider a fixing time distribution as Frlang-2 while the
parameter A is 1.4h and E[s] = 30 minutes. The server utilization is 0.7, E[s*] = 3/8,
Wq=19/12, Ly = 133/60.

In the case of GI/M/1 model, with general independent interarrival time
distribution and Poisson fixing time distribution, the steady state number of fault
reports in the system, N, has the distribution {p,} given by

po=P[N=0]=1-p,

pn=P[N=n]=pm(l-m)",n=0,1,2,3, ...

where m,, the probability that an arrival fault repert finds the developing team
idle. According to [3], 1-my = A®{um,) with A*() being the Laplace Stieljes
transform of the interarrival time.

When FErlang-2 distribution is used, m, as a function of p has the following
values:

p 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 0.95 | 098] 0999

T | 0.971] 0.906 [0.822 | 0.725 | 0.618 0.504 0.384 0.260 0.132 | 0.066 |0.027] 0.001

If X is the random variable describing the steady state number of fault reports
such as a new fault report finds in the system, then E[X] = (1-my)/ mpand Var [X] =

(1-mp)/ 753 . Other important characteristics are:

25

L.=E[N] = p/my with Var[N] = Mzo_p) :
A

0
(A-7,)p
7y

Ly=E[Ny] =2 W,= » W= E[s]/ m,.

If the management team considers the server utilization as input data, with 7,
already known, then analysing the system characteristics will decide about the
fixing team capabilities and capacity. Only minor changes in the pattern of fixing
rate or the failure rate will change significantly the system performances.

4. Conclusions

The queueing approach can provide valuable information for managers
related to the debuging and maintaining software in a similar manner as for the
hardware case. However, the queueing model parameters are difficult to estimate
from input data. We can try to estimate such parameters by multilinear regression
(based on different explanatory variables) or by some nonlinear regression models.
However, the numerical drawbacks generated by ill-conditioned matrices appearad
in the computational process make such estimation unusable.

If descriptive statistics is used and the above models are applied, the manager
can obtain information related to the software testing/maintaining process and it is
able to change either number of beta testers (which generate fault reports) or the
size of fixing team.

References

1. Albeanu, G., Popentiu-Vlidicescu Fl., Toral Quality for Software
Engineering Management, in Springer Reliability Engineering Handbook
(H. Pham editor), Springer Verlag, 2002.

2. Cituneanu, V. M., Popentiu Fl., Gheorghiu M., Albeanu G., Mainfenance
Strategies Using Queueing Theory, CNETAC'88 — The 4th Conference in
Electrenics, Telecommunications, Automation and Computers, 1988, pag.
137-143 (in Romanian.)

3. Kleinrock, L., Queuneing Systems, Volume [Theory, Wiley, New York.
1975.

4. Kleinrock, L., Queueing Systems, Volume II: Computer Applications,
Wiley, New York, 1976.

5. Lee, A. M., Applied Queueing Theory, The Macmillan Press Limited,
London, 1966.

6. Luong B., Liu D-B, Resource Allocation Model in Software Development,
Proc. Ann. Reliability & Maintainability Symp., 2001, pp. 213-218.

7. Mihoc Gh., Ciucu G., Muja A., Modele matematice ale asteptdri. Editura
Academiei RSR, Bucuresti, 1973 (in Romanian.)

26

