
ALGEBRAIC STATISTICS: SOME APPLICATIONS1

STICLARU, Gabriel
Faculty of Mathematics-Informatics

Ovidius University of Constanta
gabrielsticlaru@yahoo.com

Abstract
A main purpose of this report is to present the connections

between Algebra and Statistics, focused on the applications of Algebra in
Statistics. We present applications in experimental designs and we exem-
plify by using the free computer algebra systems SINGULAR and CoCoA.

Keywords: Algebraic Statistics, Gröbner bases, Design of Experi-
ments, Computer Algebra System

AMS Classification: 13P10, 13P25, 62K15

1. Introduction

Many people think that Algebra and Statistics have nothing in common,
except some applications of Linear Algebra to Statistics. A main purpose of
this report is to uncover the numerous connections between these fields, fo-
cused on the applications of algebra and its computational tools in Statistics.

Algebraic Statistics is a new field, less than a decade old, whose name
was coined by statisticians interested in applying Gröbner bases to the design
of experiments (see [8]).

The statistical literature is mainly concerned with explaining techniques
but in the last years, abstract algebra have been used to give a mathemati-
cal foundation. Areas in algebra include commutative algebra and algebraic
geometry, group theory, automata theory, formal languages, combinatorics,
graph theory, artificial intelligence, number theory, coding theory and cryp-
tography. It has been applied in design of experiments, hypothesis testing,
maximum likelihood estimation, computational biology and finance.

All major computer algebra systems such as SINGULAR, Macaulay2,
CoCoA, Axiom, Macsyma, Maple, Mathematica, Reduce contain Gröbner ba-
sis algorithms. The most efficient programs are, however, more specialized,
and we will mention some free software.

SINGULAR has been developed by a group at the University of Kaiser-
slautern and is probably the most efficient program for some classes of prob-
lems from algebraic geometry and for polynomial computations. We present

1Ph.D. Student Paper

41

some of the most important features of SINGULAR.
Other commonly used is Macaulay, created by D. Bayer and M. Still-

man. In addition to Gröbner bases for ideals and modules, many commands
are built in, such as ideal operations, calculation of syzygies and Hilbert series.

CoCoA has been developed by a group at the University of Genova. It
has a nice interface, and like Macaulay lots of scripts for commutative algebra
and algebraic geometry. It also offers lots of strategy choices and different
orderings, and allows more general coefficients than Macaulay.

In this report, many computations was made with Computer Algebra
Software, SINGULAR and CoCoA.

Many recent work in algebraic statistics has considered polynomials,
Grobner bases and toric ideals. Polynomials and ratios of polynomials appear
in statistics and probability under various forms, in model representations as
well as in inferential procedures. Gröbner bases are a useful tool to obtain a
set of different models identified by an experimental design.

In section 3 we introduce the basic algebraic machinery for Statistics:
rings of polynomials, ideals, varieties, Gröbner bases and toric ideals.

In algebraic statistics an experimental design is described by a set of
polynomials called the design ideal. This is generated by finite sets of polyno-
mials. Two types of generating sets are used in the literature: Gröbner bases
and indicator functions. In section 4, we describe them, how they are used
in the analysis and planning of a design and how to switch between them.
Examples include full factorial designs and fractions of full factorial designs.

2. Computer Algebra Software

The growth of algebraic statistics has coincided with the rapid devel-
opments of fast symbolic algebra packages such as SINGULAR, CoCoA, and
Macaulay 2. The major purpose of a Computer Algebra System (CAS) is to
manipulate a formula symbolically using the computer.

ORMS (http://orms.mfo.de) and SIGSAM (www.sigsam.org/software)
maintains a collection of references to Mathematical Software project and
computer algebra systems.

There are many CAS as commercial systems, with general-purpose (nu-
merical computation, symbolic algebra, functions, graphics, programming):
Magma, Maple, MatLab and Mathematica. We give below a short overview
of the most important open-source or free general purpose computer algebra
software available at the time of writing:

• SINGULAR (www.singular.uni-kl.de): computing SINGULARities.
• CoCoA (http://cocoa.dima.unige.it): Computations in Commutative Al-

gebra.
• Macaulay2 (www.math.uiuc.edu/Macaulay2): algebraic geometry and

commutative algebra.
• GAP (www.gap-system.org): Groups, Algorithms and Programming.
• SAGE (http://sage.scipy.org/sage): Software for Algebra and Geometry

Experimentation.
• 4ti2 (www.4ti2.de): computation of Hilbert bases, Graver bases, toric

Gröbner bases.

42

• Normaliz (www.math.uos.de/normaliz): computing normalizations.

Let us give a short overview of SINGULAR. There are a lot of docu-
mentations about SINGULAR: introductory textbooks, articles, manuals and
tutorials (see [5]).

SINGULAR is a computer algebra system for polynomial computations,
commutative and non-commutative algebra, algebraic geometry, and singular-
ity theory. It is free and open-source under the GNU license and is available as
a binary program (sources C/C++ compiler required), for the most common
hard and software platforms:

• Windows 95/98/ME/NT/2K/XP.
• Unix: Linux (PC, DEC-Alpha), HP-UX (Hewlett-Packard), Solaris (Sun),

IRIX (SGI), AIX (IBM), OSF (DEC), FreeBSD (PC).
• Macintosh: PPC (need MPW), MacOS X.

SINGULAR’s main computational objects are ideals and modules over a
large variety of baserings. The baserings are polynomial rings over a field (e.g.,
finite fields, the rationals, floats, algebraic extensions, transcendental exten-
sions), localizations or quotient rings with respect to an ideal. A general and
efficient implementation of communication links allows SINGULAR to make
its functionality available to other programs.

SINGULAR is based on other open source software, like GMP and NTL.
GMP is a free library for arbitrary precision arithmetic, operating on signed
integers, rational numbers, and floating point numbers.

NTL is a high-performance, portable C++ library providing data struc-
tures and algorithms for manipulating signed, arbitrary length integers, vec-
tors, matrices, and polynomials.

Because SINGULAR is based on this systems, there is no practical limit
to the precision except the ones implied by the available memory in the ma-
chine SINGULAR runs on.

Many SINGULAR libraries are for the communication with other soft-
ware (4ti2, Gfan, Normaliz, Polymake, Topcom), and other software (Macaulay2
and Sage) have interfaces for SINGULAR.

Here are some of the most important features of SINGULAR:
• Large variety of algorithms implemented in kernel(written in C/C++).

• Many algorithms implemented as SINGULAR libraries.

• Computation in many rings, including polynomial rings (SINGULAR is
one of the fastest CAS for polynomial computations).

• Ideals Theory (intersection, ideal quotient, elimination and saturation).

• Computations with rational numbers, floating point real numbers.

• A programming language, which is C++ like.

Its advanced algorithms, address topics such as: multivariate polyno-
mial computations, commutative and non commutative homological algebra,
invariant theory, solving, linear algebra, singularity theory, deformation the-
ory, normalization, primary decomposition, syzygies and free resolutions of
modules, combinatorics, number theory.

43

SINGULAR comes with a set of standard packages:

• Linear algebra;
• Commutative algebra;
• Algebraic geometry;
• Singularities;
• Invariant theory;
• Symbolic-numerical solving;
• Coding theory;
• System and Control theory;
• Tropical Geometry;
• Non-commutative algebra.

Commutative Algebra package has libraries for computing with poly-
nomials, ideals, algebras and maps, Gröbner bases, toric ideals, homological
algebra, integer programming, primary decomposition of modules, normaliza-
tion, etc.

3. Computational Commutative Algebra for Statistics

Many papers (see [4,8]) introduce the use of computational commuta-
tive algebra in Design of Experiments (DoE). The conclusions of these papers:
”Many models can be solved using methods of commutative algebra and al-
gebraic geometry” means that modern computational algebra packages such
as SINGULAR can be used. Algebraic algorithms involve computations in
rings like polynomial rings using ideals and Gröbner bases. In last years many
innovations have entered from the use of the apparatus of polynomial rings:
algebraic varieties, ideals, elimination, quotient operations and so on.

Computational methods in commutative algebra and algebraic geometry
has relatively short history. We briefly recall the basic results from commu-
tative algebra we need to develop the subject. For this background, all the
computations will be made in SINGULAR and sources for the material in the
present section are [1, 3, 6, 7].

The concept of a ring is probably the most basic one in commutative
algebra. Best known rings are Z,Q,R,C and the polynomial ring in one or
many variables.

In SINGULAR one can define polynomial rings over the fol-
lowing fields:

• the field of rational numbers Q.
• finite fields Fp, p a prime number ≤ 32003.
• finite fields GF (pn) with pn elements, p a prime, pn ≤ 215.
• transcendental extensions of Q or Fp.
• simple algebraic extensions of Q or Fp.
• simple precision real floating point numbers.
• arbitrary prescribed real floating point numbers.
• arbitrary prescribed complex floating point numbers.

44

Computation in the field of rational numbers

LIB "general.lib";
ring Q=0,x,dp;
bigint f=factorial(40);
f; //815915283247897734345611269596115894272000000000
number n = 13579/24680;
n^5; //461677746637035023899/9156421507364556800000
bigint bi = binomial(200,100);
bi; //90548514656103281165404177077484163874504589675413336841320
number n;
n=number(30)^40;

n; //1215766545905692880100

Let K be a commutative field, and let R = k[x1, . . . , xn] be the polyno-
mial ring over K in the indeterminates x1, . . . , xn.

Definitions

A subset I ⊂ R is an ideal if f + g ∈ I for all f, g ∈ I and fg ∈ I, for all
f ∈ I and all g ∈ R.

Let F be a set of polynomials in R. The ideal generated by F is denoted
by < F > and is given by the set {a1f1 + . . . + amfmf̄i ∈ F, ai ∈ R}.

Let I and J be ideals in R. The sum and product of the two ideals is
defined as follows: I + J = {f + g : f ∈ I, g ∈ I} and IJ =< F >, where
F = {fg : f ∈ I, g ∈ J}.

The ideal quotient of I by J (colon ideal) is defined as I : J = {a ∈ R :
aJ ⊂ I}.

The saturation of I with respect to J is I : J∞ = {a ∈ R : ∃n such that
aJn ⊂ I}.

The radical of I, denoted by
√
I or rad(I) is the ideal

√
I = {a ∈ R :

∃n ∈ N such that an ∈ I}.
A standard algebraic construction is the quotient ring R/I for any ideal

I ⊆ R. The relation ∼ defined as {f ∼ g if, and only if, f − g ∈ I} is an
equivalence relation. The elements of R/I are the equivalence classes. R/I
inherits a ring structure from R by defining sum and product of classes as
[f] + [g] = [f + g], [f][g] = [fg].

A monomial in n variables (indeterminates) x1, . . . , xn is a power prod-
uct xα where α = (α1, . . . , αn), αi ∈ N . A polynomial in R is a finite K–linear
combination of monomials. The presentation of a polynomial as a linear com-
bination of monomials can be unique by choosing a monomial ordering on the
set of monomials. A monomial ordering is a total ordering < on the set of
monomials (semigroup under multiplication).

A term order is a total order < on the set of all monomials such that:

1. it is multiplicative: xa < xb ⇒ xa+c < xb+c.
2. the constant monomial is the smallest, i.e. 1 < xα for all α ∈ Nn\{0}.

The most important monomial orders are listed below. For monomials

u = xα1
1 · · ·xαn

n and v = xβ1
1 · · ·xβn

n one defines:

45

(lp) the lexicographic order (purely lexicographic) by u <lp v iff for some k
one has αk < βk and αi = βi for i < k;

(dp) the degree reverse lexicographic order by u <dp v iff deg(u) < deg(v) or
deg(u) = deg(v) and for some k one has αk > βk and αi = βi for i > k.

(Dp) the degree lexicographic order by u <Dp v iff deg(u) < deg(v) or deg(u) =
deg(v) and u <lp v.

These three monomial orders satisfy x1 > x2 > · · · > xn. Note that in one
variable, there is only one term order: 1 < x < x2 < x3 < . . . <. For n = 2,
we have :

• degree lexicographic order: 1 < x1 < x2 < x21 < x1x2 < x22 < x31 <
x21x2 < . . . <

• purely lexicographic order: 1 < x1 < x21 < x31 < . . . < x2 < x1x2 <
x21x2 . . . <

Some monomial orders

ring R1 = 0,(x,y),lp; // ring Q[x,y] and lexicographical order
poly f = x3y + y4 + x4+x2+xy2+xy+y5+x+y; // definition for f
f; //-> x4+x3y+x2+xy2+xy+x+y5+y4+y
ring R2 = 0,(x,y,z),dp;
// ring Q[x,y] and degree reverse lexicographical order
poly f = imap(R1,f); // the same f but in R2
f; // -> y5+x4+x3y+y4+xy2+x2+xy+x+y
ring R3 = 0,(x,y,z),Dp;
//ring Q[x,y] and degree lexicographical order
poly f = imap(R1,f); // the same f but in R3

f; // -> y5+x4+x3y+y4+xy2+x2+xy+x+y

Computation in polynomial rings

ring R= 0,(x,y),lp; // Q[x,y,z], lp=lexicographical ordering
poly f = 3x3+5y2;
poly g= 2*x^3+4*y^2;
poly h=f-g;
h; // x3+y2

ring R = 0,(x,y,z),lp;
poly f = y4z2-x2y2z2+3x6+2z7+3y7+x5+y5+z5;
f; // f in lp order -> 3x6+x5-x2y2z2+3y7+y5+y4z2+2z7+z5

leadmonom(f); //leading monomial -> x6

leadexp(f); //leading exponent for x,y,z: -> 6,0,0
lead(f); //leading term -> 3x6

leadcoef(f); //leading coefficient -> 3

Factorization (the transformation of the polynomial into a product of
polynomials)

ring R=0,(x,y),lp;
poly f=x2-y^2;

factorize(f); // factors: 1, x-y, x+y

46

Operations on ideals

ring Q=0,(x,y,z),dp;
ideal I=x,y;
ideal J=y2,z;
ideal H=I+J;
H; // -> <x, y, y2, z>=<x,y,z>
ideal H=intersect(I,J);

H; // -> <y2, yz, xz>

Definitions

Every polynomial f ∈ R has an initial monomial, denoted by in<(f). For
every ideal I of R, the initial ideal of I is generated by all initial monomials
of polynomials in I: in<(I) = < in<(f) : f ∈ I >.

A finite subset G of an ideal I is a Gröbner basis (with respect to the
term order < if { in<(g)|g ∈ G} generates in<(I).

Note: There are many such generating sets. For instance, we can add
any element of I to G to get another Gröbner basis.

A reduced Gröbner basis satisfies:
(1) For each g in G, the coeff of in<(g) is 1.
(2) The set { in<(g) : g ∈ G } minimally generates in<(I).
(3) No trailing term of any g in G lies in the initial ideal in<(I).

If F is a set of polynomials, the variety of F over K equals V (F) =
{(z1, . . . , zn) ∈ Kn : f(z1, . . . , zn) = 0, f ∈ F}.

Note: The variety depends only on the ideal of F , i.e. V (F) = V (< F >).
If G is a Gröbner basis for F , then V (G) = V (F).

A monomial u = xα1
1 · · ·xαn

n is standard if it is not in the initial ideal
in<(I).

Let be inRd a finite setA = {a1, · · · , an} ⊂ Zd
≥0. LetK[t] = K[t1, · · · , td]

denote the polynomial ring in d variables over a field K. We associate A
with the semigroup ring K[A] = K[ta1 , · · · , tan], where ta = ta11 · · · tadd if
a = (a1, · · · , ad). Let K[x] = K[x1, · · · , xn] denotes the polynomial ring
in n variables over K. The toric ideal IA of A is the kernel of the surjective
homomorphism π : K[x] −→ K[A] defined by setting π(xi) = tai for 1 ≤ i ≤ n.

Exemples: If n = 2 and in<(I) =< x31, x
4
2 >, the number of standard

monomials is 12. If in<(I) =< x31, x1x
4
2 >, then the number of standard

monomials is infinite, because xn2 (n ≥ 1) are standard monomials.

Some basic properties of polynomial rings

R is a factorial domain.
R is Noetherian, so each ideal in R is finitely generated (Hilbert’s basis

47

theorem). This means that any ideal I has the form < F > for a finite set of
polynomials F .

Fixing an ideal I in R and a term order <, there is a unique reduced
Gröbner basis for I.

V (F) is empty if and only if G = {1} (Hilbert’s Nullstellensatz).
The number of standard monomials equals Cardinal(V (I)), where the

zeroes are counted with multiplicity.
The set of standard monomials is a K-basis for the residue ring R

I (i.e.,
modulo the ideal I, every polynomial f can be written uniquely as a K-linear
combination of standard monomials). Given f , there is an algorithm (the
division algorithm) that produces this representation (called the normal form
of polynomial f) in R.

Note that a Gröbner basis of an ideal I is a particular generator set of
I. For every ideal I and term ordering < there exist Gröbner bases of I and
a unique reduced Gröbner basis. Gröbner bases of I can be computed from
any generator set of I with the Buchberger algorithm which is implemented
in most softwares for algebraic computation. For every ideal there is a finite
number of reduced Gröbner bases.

Computing Grobner bases

// In K[x] with one variable
ring Q=0,(x),dp;
ideal I=x2+3x-4,x3-5x+4;
ideal G=std(I);
G; // < x-1>
Let F = {x2+xy-10, x3+xy2-26, x4+xy3-70}.
Here, G = {x-2,y-3} and V(F) = V(G) = {(2,3)}.
ring Q=0,(x,y),dp;
ideal I=x2+xy-10, x3+xy2-26, x4+xy3-70;
ideal G=std(I);

G; // -> <x-2, y-3>

Computing toric ideals

LIB "toric.lib";
ring r=0,(x1,x2,x3,x4),lp;
intmat A[2][4]=
1,1,1,1,
0,1,2,3;
ideal I=toric ideal(A,"ect"); // Conti - Traverso algorithm

I; // -> <x2x4-x
2
3, x1x4-x2x3, x1x3-x

2
2>

Examples of ideals

For the ring K[x], in one variable, every ideal is principal; that is, is
generated by one polynomial, I =< f >.

In R = k[x1, . . . , xn] : graded ideals, monomial ideals,, square-free mono-
mial ideals, binomial ideals, toric ideals, etc.

48

4. Design of Experiments

In the context of algebraic statistics an experimental design is described
by a set of polynomials called the design ideal. This is generated by finite
sets of polynomials. We describe them, how they are used in the analysis and
planning of a design and how to switch between them. Examples include full
factorial designs and fractions of full factorial designs.

We introduce the main concept in Design of Experiments (DoE) by an
example.

When a company wants to introduce a new product into the market,
it is interested to obtain a priory information from the potential customers.
Suppose that the strategy of the company is to test five characteristics of the
product X1, X2, X3, X4, X5 say Color, Shape, Weight, Material and Price
and suppose that each variable has three values coded {−1, 0, 1}. A selected
set of potential customers should be asked to rate them on a ordinal scale
(from 0 to 10, say). The set of all these points is called a Design. A complete
set with all the combinations, is a product set called Full Design (or Full
Factorial Design). Let call D the set of the 35 = 243 points in our example.
For financial or practical reasons, is necessary to determine a subset F of D,
called fraction, from which we can reconstruct a good model.

The polynomialX(X−1)(X+1) = X3−X vanishes on the set {−1, 0, 1}.
We can say that the polynomial functions X,X2, X3 are linearly dependent
over {−1, 0, 1}. Because function X3 takes the same values as function X we
say that these are confounded by {−1, 0, 1}.

The polynomials which vanishes on D are called canonical polynomials
and for our example these are the polynomials fi = Xi(Xi − 1)(Xi + 1). All
together, they generate an ideal, the defining ideal of D.

4.1. Design ideal and Gröbner representation

We consider a design with n factors, where the levels of each factor are
coded with rational. A design F is a finite set of m distinct points in Km. Let
K[x1, · · · , xm] be the polynomial ring of indeterminates x1, · · · , xm with the
coefficients in K. The variables in R correspond to the design factors.

The full factorial design of m factors with two levels (2m design) is
expressed as

D = {(x1, · · · , xm) | x21 = · · · = x2m = 1} = {−1,+1}m,

where we write −1 and 1 as the two levels. We call a subset F ⊂ D a fractional
factorial design. Then the set of polynomials vanishing on the points of F
I(F) = {f ∈ K[x1, · · · , xm] | f(x1, · · · , xm) = 0 for all (x1, · · · , xm) ∈ F}

is the design ideal of F .
An ideal I ⊂ K[x1, · · · , xm] is generated by a finite basis {g1, · · · , gk} ⊂ I

if for any f ∈ I there exist polynomials s1, · · · , sk ∈ K[x1, · · · , xm] such that

f(x1, · · · , xm) =

k∑
i=1

si(x1, · · · , xm)gi(x1, . . . , xm).

49

The above s1, · · · , sk are not unique in general. We write I = ⟨g1, · · · , gk⟩ if I
is generated by a basis {g1, · · · , gk}. For example, for the full factorial design
of two factors with two levels (22-design), the design ideal of D = {−1,+1}2
is written as

I(D) = ⟨x21 − 1, x22 − 1⟩.

Every ideal has a finite basis by the Hilbert basis theorem. In addition, if
{g1, · · · , gk} is a basis of I(F), then F coincides with the solutions of the
polynomial equations g1 = 0, · · · , gk = 0.

Suppose there are n points in a fractional factorial design F ⊂ D. A
general method to derive a basis of I(F) is to make use of the algorithm for
calculating the intersection of the ideals. By definition, the design ideal of the
design consisting of a single point, (a1, · · · , am) ∈ {−1,+1}m, is written as

⟨x1 − a1, · · · , xm − am⟩ ⊂ K[x1, · · · , xm].

Therefore the design ideal of the n-points, F = {(ai1, · · · , aim), i = 1, · · · , n},
is given as

I(F) =

n∩
i=1

⟨x1 − ai1, · · · , xm − aim⟩. (1)

To calculate the intersection of ideals, we can use the theory of Gröbner bases.
In fact, by introducing the indeterminates t1, . . . , tn and the polynomial ring
K[x1, · · · , xm, t1, · · · , tn], is written as

I(F) = I∗ ∩K[x1, . . . , xm],

where

I∗ = ⟨ti(x1 − ai1), · · · , ti(xm − aim), i = 1, · · · , n, t1 + · · ·+ tn − 1⟩ (2)

is an ideal of K[x1, · · · , xm, t1, · · · , tn]. Therefore we can obtain a basis of
I(F) as the reduced Gröbner basis of I∗ with respect to a term order satisfy-
ing {t1, · · · , tn} ≻ {x1, · · · , xm}. This argument is known as the elimination
theory, one of the important applications of Gröbner bases.

4.2. Indicator function

To define the indicator function of F we must consider F as a subset of
a larger design D ⊂ Km. The indicator function f of F ⊂ D is the response

function f(a) =

{
1 if a ∈ F
0 if a ∈ D \ F .

When the coordinates of the points in F and D are known, the indicator
function f can be computed using some form of interpolation formula.

The indicator function f is a real valued polynomial:
∑

α∈L bα Xα(a),
a ∈ D.

50

Example

The indicator function of fractional design F = {(1, 0) , (−1, 0), (0, 1),
(0,−1)} is f = −2x1x2 + x21 + x22.

This result is obtained by the following instructions in CoCoA language.

- - - CoCoa code fraction -> indicator function
- - - Fraction F ={(1, 0), (-1, 0), (0, 1), (0,-1)}
Use R::=Q[x[1..2]];
Define About()
Return
"Compute indicator function from fraction design
call Fraction2Indicator(Points,D), where:
D:=Tuples([-1,0,1], NumIndets());
Points:= [[1,0],[-1,0],[0,1],[0,-1]];
"
EndDefine;
Define Fraction2Indicator(Points,D);
ND:=Len(D); PA:=NewList(ND,0); P:=NewList(ND);
For H:=1 To Len(Points) Do
For K:=1 To Len(PA) Do
If Points[H]=D[K] Then PA[K]:=1 EndIf;
EndFor;
EndFor;
IdD:=IdealAndSeparatorsOfPoints(D);
For K:=1 To Len(PA) Do
P[K]:=PA[K]*IdD.Separators[K]
EndFor;
F:=Sum(P);
Return F;
EndDefine;
D:=Tuples([-1,0,1], NumIndets());
Points:= [[1,0],[-1,0],[0,1],[0,-1]];
About();
Fraction2Indicator(Points,D);

- - - -The output is: -2x[1] x[2] + x[1]^2 + x[2]^2

When working with polynomial ideals, it is useful to choose a standard
form for writing the polynomials. This can be done by choosing a term or-
dering. For any term ordering for which x1 ≻ x2 the reduced Gröbner ba-
sis representation of I(F) is given by the three polynomials g1, g2, g3, where
g1 = x21 + x22 − 1, g2 = x32 − x2 and g3 = x1x2. The polynomial g1 indicates
that the points of F are on the unit circle, g2 that the factor corresponding to
x2 has three levels 0,±1 and g3 that at least one coordinate of each point in
F is zero.

If we fix a Gröbner basis of an ideal I ⊆ R, then for every equivalence
class [f] ∈ R/I there exists a unique f ′ ∈ [f] written as combination of mono-
mials not divisible by any monomial in LT(I). The polynomial f ′ is called
the normal form of f and we write NF(f). Hence, Gröbner bases give a tool
to effectively perform sum and products in the quotient ring R/I. Given a
design F , the quotient ring R/I(F) is a vector space of dimension equal to
the cardinality of F . A monomial basis of R/I(F) can be used as support

51

for a statistical (saturated) regression model as the corresponding information
matrix is invertible. A vector space basis of R/I(F) can be determined by
using Gröbner bases. The monomials which are not in LT(I(F)) are linearly
independent over the design. Call this set EstF (set of estimators or standard
monomials). They are those monomials which are not divided by any of LT(g)
for all g in a Gröbner basis of I(F).

The leading terms of the Gröbner basis elements of I(F) are LT(g1) = x21,
LT(g2) = x32 and LT(g3) = x1x2. The four monomials 1, x1, x2, x

2
2 are not di-

visible by these leading terms, equivalently the first four columns of X below
give an invertible matrix:

X =

1 x1 x2 x2

2 x2
1 a

1 1 0 0 1 (1, 0)
1 0 1 1 0 (0, 1)
1 −1 0 0 1 (−1, 0)
1 0 −1 1 0 (0,−1)

We have the set of estimators EstF ={1, x1, x2, x22} and the linear re-

sponse model (regression model) with all estimators are α+ βx1 + γx2 + δx22.

4.3. Changing representation

Let f be the indicator function of F in D ⊂ km, I(D) = ⟨d1, · · · , dp⟩
and I(F) = ⟨d1, · · · , dp, g1, · · · , gq⟩. Note that usually the generator set
{d1, · · · , dp} is known and has an easy structure, often being D a full fac-
torial design and hence dj a polynomial in xj for j = 1, · · · ,m. Then,
I(F) = ⟨d1, · · · , dp, f −1⟩. This means that once F is known, a Gröbner basis
of I(F) is obtained by applying the Buchberger algorithm to {d1, . . . , dp, f−1}.

If we apply this algorithm for F = (1, 0), (−1, 0), (0, 1), (0,−1); f =
−2x1x2 + x21 + x22, d1 = x31 − x1, d2 = x32 − x2, the reduced Gröbner basis
r of I(F) must be G = {g1, g1, g1} where g1 = x21+x22− 1, g2 = x32−x2 and
g3 = x1x2.

SINGULAR: Indicator function − > Gröbner bases

ring R=0,(x1,x2),dp;
poly f1=x1^3-x1;
poly f2=x2^3-x2;
poly f3=-2*x1*x2+x1^2+x2^2-1;
ideal I=f1,f2,f3;
ideal G=std(I);
G;
G[1]=x1*x2
G[2]=x1^2-2*x1*x2+x2^2-1

G[3]=x2^3-x2

In algebraic geometry a design F is seen as a zero-dimensional variety.
The focus both in algebraic statistics and in this section switches from the
design F to its ideal I(F). As we saw, the Gröbner representation and the
indicator function representation of F are nothing else than two sets of gen-
erators of I(F).

52

References

1. Cohen, A., Gröbner bases, an introduction in Some Tapas of Computer
Algebra, ”Springer”, Berlin, 1-33, 1999.

2. Drton, M., Sturmfels B., Sullivant S., Lectures on Algebraic Statistics,
”Springer”, New York, 157-163, 2009.

3. Froberg, F., An Introduction to Gröbner Bases, ”John Wiley & Sons”,
Chichester, 43-60, 1998.

4. Gibilisco, P., Riccomagno, E., Rogantin, M.P., Wynn, H.P., Algebraic
and Geometric methods in statistics, ”Cambridge University Press”, 27-
47, 175-178, 2010.

5. Greuel, G., Pfister, G., A Singular Introduction to Commutative Algebra,
”Springer”, Berlin/Heidelberg, 2002.

6. Kreuzer, M., Robbiano L., Computational Commutative Algebra 1, ”Sprin-
ger”, Berlin/Heidelberg, 2000.

7. Kreuzer, M., Robbiano, L., Computational Commutative Algebra 2, ”Sprin-
ger”, Berlin/Heidelberg, 2005.

8. Pistone, G., Riccomagno, E., Wynn, H., Algebraic Statistics: Computa-
tional Commutative Algebra in Statistics, ”CRC Press”, 43-71, 2001.

53

