
ON DESIGNING EXTENDABLE JAVA-BASED
SOFTWARE FOR TIME SERIES ANALYSIS

ALBEANU, Grigore
Faculty of Mathematics and Informatics

Spiru Haret University
g.albeanu.mi@spiruharet.ro

MADSEN, Henrik
DTU Informatics, Lungby 2800, Denmark

hm@imm.dtu.dk

POPENŢIU-VLĂDICESCU, Florin
University of Oradea, UNESCO Chair in Information Technologies &

City University London, UNESCO Chair in Information and Communication
popentiu@imm.dtu.dk

DUMITRU, Marius
Spiru Haret University, Faculty of Mathematics and Informatics &

IT Smart Systems, 26 Tibles Street, Bucharest, Romania
marius dumitru86@yahoo.com

Abstract
Time series analysis is an important topic both for teaching statis-

tics and research. The time series approach is used to predict future
values based on the history of past values. Previous results in time series
analysis methodologies, relevant applications and software development
for time series analysis motivate us to promote a recently developed
extendable Java-based tool for time series analysis. The software design
methodology, the implemented algorithms and the extension methodology
are detailed.

Keywords: time series, extendable software, component-based
development, Java

ACM Classification: K.6.3, G.4

1. Introduction

Discovering knowledge by processing time series is an important objec-
tive for effective management of a large class of phenomena. Stationary and
non-stationary time series models are used in various fields. There are two

33



main approaches to time series analysis. The first approach (time domain)
represents time series as a function of time and is used to obtain the trend
component and, then, to propose a prediction model. The second approach
deals with the frequency domain, to determine the periodic components of the
series, according to (Hamilton 1994) and (Madsen et al. 2006). Other aspects
a related to time series segmentation, times series similarity, pattern discovery
etc.

Several methodologies have been proposed and used to analyse and fore-
cast time series ranging from linear modelling to non-linear techniques in-
cluding those based on neural networks (Gheyas & Smith 2009). Also fuzzy
modelling (Hong 2005) received great interest and useful results were obtained
in some fields of application.

Previous results in time series analysis methodologies, relevant appli-
cations and software development for time series analysis [2, 3, 4, 13, 16]
motivate us to promote a recently developed extendable Java-based tool for
time series analysis. This paper describes SADM - a Java-based software tool
for time series management, analysis and visual description. The most impor-
tant attribute of the software is the extendability. By design, new methods of
investigation will be added and others will be updated easily.

Only basic methods for time series analysis were implemented till now,
but more methods will be connected in future.

The software can be used not only as a software engineering demonstra-
tion tool, but also for experiments and research in the field of applied time
series like financial, stock exchange, signal processing etc.

2. Time series basic algorithmic methods

Let the value of the time series at some time point t be denoted by x[t].
The observed values can be represented as a sequence having x[0] - the initial
time point, x[1] - the second time point and so forth out to x[n− 1] - the last
observed value, n being the observed values.

A stationary time series is one for which the statistical behaviour of
x[t1], x[t2], . . . , x[tk] is identical to that of the shifted set x[t1 +h], x[t2 +h],. . .,
x[tk +h] for any sequence of time points t1, t2, . . . , tk and for any h the lag or
the length of the interval between two sets of observations.

Stationarity of time series implies the homogeneity of the time series;
that means the series behaves in a similar way regardless the time sampling.
Mathematically, the stationarity implies the invariance of the joint probability
distribution of the process under observation, as explained in (Madsen et al.
2006).

Weak stationarity is used in many cases, asking for constant mean over
time: E(x[t]) = µ, and the population covariance function will depend only
on h: E((x[t + h] − µ)(x[t] − µ)) = γx(h). E is the averaging operator over
the population densities and h is the lag.

The scaled version of the covariance function is called ACF the Auto-
Corelation Function, and is given by ρx(h) = γx(h)/γx(0), with values between

34



-1 and 1, being useful to establish the correlation at adjacent points of the
same series. Many time series analysing techniques are based on the idea that
a suitably modified time series can be regarded as weakly stationary.

The most used methods for time series modification are: detrending
(based on some parametric model and analyse the residual series), differencing
(by first order or high order difference operation), applying different transfor-
mations (logarithmic, square root, Box-Cox etc.), and filtering (various linear
combinations depending on the field of application).

Using graphical methods to analyse a given time series an indication of
possible linear as well as nonlinear relations can be obtained based on the
lagged scatter plots (the plots that put x[t] on the horizontal axis and x[t+ h]
on the vertical axis) using various values of the lag h = 1, 2, 3, . . . ,m.

The measuring of the ACF is based on the following algorithm:

x̄ =
1

n

n−1∑
t=0

x[t], ȳ =
1

n

n−1∑
t=0

y[t],

γ̂x(h) =
1

n

n−h−1∑
t=0

(x[t+ h] − x̄)(x[t] − x̄),

ρ̂x(h) = γ̂x(h)/γ̂x(0).

The CCF - Cross Correlation Function is used to study the correlation
when relating to time series x[t+ h] and y[t], h = 1, 2, . . . ,m, and is obtained
by scaling the cross covariance function, based on the following algorithm:

x̄ =
1

n

n−1∑
t=0

x[t], ȳ =
1

n

n−1∑
t=0

y[t],

γ̂xy(h) =
1

n

n−h−1∑
t=0

(x[t+ h] − x̄)(y[t] − ȳ),

ρ̂xy(h) =
ρ̂xy(h)√
ρ̂x(0)ρ̂y(0)

.

In practice, the function ρ̂xy(h) is computed for a number of positive
and negative values, h = 0, 1,−1, 2,−2, . . . up to some limit and the results
are plotted as a function of the lag h.

Another measure related to a time series is PACF - the Partial AutoCor-
relation Function, being useful in the identification of autoregressive models
for time series.

In order to estimate PACF, let us denote by y[t] the time series x[t] − x̄
(the deviation from the sample mean). For a given lag value h, by minimizing
the expression

MSE =
n−h−1∑
t=0

(
y[t+ h] −

h∑
k=1

a[k]y[t+ h− k]

)

35



over the possible values of the coefficients a[1], a[2], . . . , a[h], the partial auto-
correlation coefficient is obtained as the estimation â[h].

There are two main types of correlation: autoregressive, and moving
average.

The models denoted by AR(p), respective MA(q), are given by:

AR(p) : x[t] = a[1]x[t− 1] + a[2]x[t− 2] + . . .+ a[p]x[t− p] + ε[t],

MA(q) : x[t] = ε[t] − b[1]ε[t− 1] − b[2]ε[t− 2] − . . .− b[q]ε[t− q].

Combining the two models, the ARMA(p, q) model is obtained:

x[t] =
p∑

i=1

a[i]x[t− i] + ε[t] −
q∑

j=1

b[j]ε[t− j].

Testing for stationarity is based on unit root approach. The following
methods are mostly used: ADF - Dickey & Fuller (1979), PP- Phillips-Perron
(1988), KPSS - Kwiatkowski et al (1992). The applicability in different fields
is proved by Enders (1995), Hamilton (1994), and Tsay (2002), to mention
only a few relevant references.

Figure 1. SADM State Transition Diagram

Figure 2. SADM Front Panel

36



Figure 3. Viewing the Extendability Option

Figure 4. Viweing the History of Time Series File

3. The extendability approach

Reusability and extendability are important attributes of the software
quality, as Moses J. (1994) remarked. Combining object-oriented design and
agile development methodologies the software quality can be continuously im-
proved. By reusability, the development time becomes shorter, and the usage
of already existing reliable components makes possible the production of soft-
ware having high reliability. At least the following artifacts can be reused: the
software engine, some requirements, the source code having zero defects, the
reusable data, some sections of the HELP files, some test cases, test plans,
and test scripts, some user documents, and reusable human interfaces.

Extendability is the ability to incorporate new features. The extend-
ability can be obtained by many methods: inheritance, overloading, plug-in
services, dynamic libraries. New methods or services can be added or al-
ready existing methods or services can be updated when the extendability is
required.

Inheritance and overloading are object oriented programming concepts.
The following types of inheritance are valid: model inheritance (subtype, view,
restriction, extension), variation (functional, data type, uneffecting), and soft-
ware inheritance. The inheritance can be simple or multiple. This approach
promotes the bottom-up design of applications.

The overloading is a software engineering process whereby multiple func-
tions of different signature are defined with the same identifier. Both methods

37



Figure 5. SADM - The Updating Dialog

Figure 6. SADM Analysing Data - Already Supported Methods and Options

and operators can be viewed in multiple roles in C++ and C#, but in Java
the overloading applied only to methods.

In general by plug-in components some specific capabilities or services
are added to the software.

Dynamic libraries are modules that contain functions and data that can
be used by other modules. Therefore, the model of the software architecture
is a graph not necessary a tree.

SADM was designed in order to support updating. The state diagram is
given in Fig. 1.

4. Remarks and future developments

The SADM architecture is the simplest possible (Fig. 2). Entire activity
is registered: updating methods (Fig. 3) and time series data (Fig. 4). Updat-
ing a method asks for the method name and the specific command (Fig. 5).
The updating procedure is applied for every code file to be uploaded. Fig. 6
gives a view on the analysis menu (both loading data with various separators
and charting according to a selected data analysis method). A data chart for

38



Figure 7. SADM - A Data Chart Example

a particular time series file is shown in Fig. 7.
In order to create extendable software the NetBeans 6.0.1 tehnology was

selected. A special procedure for sending commands has been developed and
the project SADM for time series analyses is the result of such extendability
procedure.

SADM will be populated with new methods implementing algorithms for
time series data mining. We hope that SADM will be a valuable tool not only
for educational purposes but also in research.

Acknowledgement. This paper is an extended version of the presenta-
tion [1] given at ENBIS 2010 event in Antwerp. The software project SADM
was implemented in Java [11] by Marius Dumitru during his master program
at Spiru Haret University [6].

The authors cooperated on time series subject for many years and ap-
preciate that actual solution will be a valuable platform for future cooperation
between their institutions.

References

1. Albeanu, G., Madsen, H., Popenţiu-Vlădicescu, Fl., Dumitru, M., An
Extendable Java-based Tool for Time Series Analysis, ”ENBIS 2010”,
Antwerp, CDROM.

2. Albeanu, G., Madsen, H., Burtschy, B., Popenţiu-Vlădicescu, Fl. &
Ghica, Manuela, Bootstrapping Time Series with Application to Risk
Management, ”R & RATA, Electronic Journal of International Group
on Reliability”, Vol 1(3), 84-93, 2008.

3. Albeanu, G., Serbanescu, L. & Popenţiu-Vlădicescu, Fl., On Teaching
Data Analysis and Optimisation Using Software Tools, In Grigore Al-
beanu, Dorin Mircea Popovici, Marin Vlada (eds.), ”Proceedings of the
2nd International Conference on Virtual Learning”, Constanţa, 26-28
October, Romania, 255-260, 2007.

39



4. Burtschy, B., Albeanu, G., Boroş, D.N. & Popenţiu, Fl., Improving
Software Reliability Forecasting, ”Microelectronics and Reliability”, Vol.
37(6), 901-907, 1997.

5. Dickey, D.A., Fuller, W.A., Distribution of the Estimators for Autore-
gressive Time Series with a Unit Root, ”Journal of the American Statis-
tical Association”, 74, p. 427-431, 1979.

6. Dumitru, M., Time Series Analysis, ”Master Thesis”, Spiru Haret Uni-
versity (in Romanian), 2010.

7. Enders, W., Applied Econometric Time Series, ”John Wiley”, 1995.
8. Gheyas, I.A., Smith, L.S., A Neural Network Approach to Time Series

Forecasting, ”Proceedings of the World Congress on Engineering”, July
1 - 3, 2009, London, U.K., Vol II, WCE, 2009.

9. Hamilton, J.D., Time Series Analysis, ”Princeton University Press”,
1994.

10. Hong, D.H., A Note on Fuzzy Time-series Model, ”Fuzzy Sets and Sys-
tems”, 155(2), 309-316, 2005.

11. Java Technology, http://www.sun.com/java/, 2010.
12. Kwiatkowski, D., Phillips, P., Schmidt, P., Shin, Y., Testing the Null Hy-

pothesis of Stationarity against the Alternative of a Unit Root, ”Journal
of Econometrics”, Vol 54, 159-178, 1992.

13. Madsen, H., Albeanu, G., Burtschy, B. & Popenţiu-Vlădicescu, Fl., Ad-
dressing Time Series Modelling, Analysis and Forecasting in e-Learning
Environments, In Marin Vlada, Grigore Albeanu, Dorin Mircea Popovici
(eds.), ”Proceedings of the 1st International Conference on Virtual Learn-
ing”, Bucharest, 37-44, 2006.

14. Moses, J., Re-usability and Extendability in Object-oriented and Object-
based design, ”Transactions on Information and Communications Tech-
nologies”, 9, 427-440, 1994.

15. Phillips, P.C.B, Perron P., Testing for a Unit Root in Time Series Re-
gression, ”Biometrika”, 75, 335-346, 1988.

16. Popenţiu - Vlădicescu, F., Burtschy, B. & Albeanu, G., Time Series
Methods for Modeling Software Quality, ”Proceedings of ESREL 2001”,
Italy, 1, 9-15, 2001.

17. Tsay, R. S., Analysis of Financial Time Series, ”John Wiley & Sons”,
2002.

40


