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Abstract
The paper investigates the structural stability of a cancer cell

population time-delayed flow, establishing the critical value of the delay
parameter that produces Hopf bifurcation. The model is investigated for
three sets of values of the parameters. Numerical results are obtained
using the software Maple 11.
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1. Introduction

The understanding of the cancer mechanism has a significant impact
on cancer treatment strategies. Recent research in cancer progression and
treatment indicates that many forms of cancer arise from one abnormal cell
or a small subpopulation of abnormal cells ([9]). These cells, which support
cancer growth and spread are called cancer stem cells (CSCs). Moreover, they
have the capacity of initiating new tumors after long periods of remission ([3]).
Because these CSCs display many of the same characteristics as healthy stem
cells, finding methods to target them (without killing the healthy stem cells)
is an essential objective.

It is well known that cancer cell populations consist of a combination of
proliferating, quiescent (resting) and dead cells that determine tumor growth
or cancer spread ([4], [7]).

In 2006, Garner et al. introduces in [6] a mathematical non-dimensiona-
lized model of cancer cell population consisting of a 2-dimensional system of
ordinary differential equations (SODE) with 4 parameters. Based on applica-
tive biological aspects, we considered in this paper a time-delay for one of the
state variable of the system. Of course, the time-delayed flow could induce
structural instability and Hopf bifurcation.

The model introduced by Garner is based on the dynamical system pro-
posed by Solyanik et al. ([11]), and estimates the behavior of the two types
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of cancer cell population (proliferating and quiescent) based on approximately
10 measurements of the total cell population over one week [11]. Its main
assumptions are as follows:

• the cancer cell population consists of proliferating and quiescent (resting)
cells;

• the cells can lose their ability to divide under certain conditions and then
transit from the proliferating to the resting state;

• resting cells can either return to the proliferating state, or die.

Figure 1. Cancer cell population evolution

Figure 1 presents a block diagram of the system. We note that Solyanik’s
model utilizes two coupled, nonlinear differential equations with the final cell
behavior dependent upon initial total cell number and the ratio between pro-
liferating and quiescent cells. The state variables are

• x - the number of proliferating cells, and

• y - the number of resting (quiescent) cells.

Their dynamics in time is described by the following differential equations
introduced by Solyanik et al. [11]:{

x′ = bx− Px+Qy
y′ = −dy + Px−Qy,

where the parameters involved have the following meaning:

• b is the rate of cell division of the proliferating cells;
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• d is the rate of cell death of the resting cells (per day);

• Q and P describe the intensity of cell transition from the quiescent to
proliferating cells and vice versa (per day).

Based on the experimental observation that cancer cells multiply in the
presence of sufficient biological and physical factors, they assumed that P
must depend on the number of cells present and, in the simplest form, can be
written as P = c(x+ ay), where:

• a is a dimensionless constant that measures the relative nutrient uptake
by resting vs. proliferating cancerous cells;

• c depends on the intensity of consumption by proliferating cells and gives
the magnitude of the rate of cell transition from the proliferating stage
to the resting stage in per cell per day.

Solyanik et al. pointed out that transition from the quiescent to the
proliferating state was more complex. One can easily guess that increasing
the number of proliferating cells would decrease the intensity of this transition;
however, a decrease in the number of proliferating cells can also have the same
effect ([13], [14]). Based on these remarks, one can assume that Q is non-
monotonous with respect to x (the number of proliferating cells) so that it
increases with increasing x up to a certain point, and then decreases as x
becomes very large. Accordingly, Q has the form Q = Ax/(1 +Bx2), where:

• A is the initial rate of increase in Q at small x;

• A/B represents the rate of decrease in Q when x becomes larger.

In their paper, Solyanik et al. studied the resulting steady states and
stability, assuming that the transition rate Q is zero ([11]).

In order to simplify the notations and reduce the number of parameters,
Garner et al. introduced in their paper [6] (2005) the following dimensionless
parameters:

x̄ = xc/b, ȳ = yca/b, t̄ = bt.

After dropping bars for notational convenience, the non-dimensional system
rewrites 

x′ = x− x(x+ y) +
hxy

1 + kx2

y′ = −ry + ax(x+ y)− hxy

1 + kx2
,

(1)

where:

• r = d/b is the ratio of the death rate of quiescent cells to the birth rate
of proliferating cells;

• h = A · (ac)−1 represents a growth factor that preferentially shifts cells
from the quiescent to proliferating state;
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• k = B · (b/c)2 represents a slightly moderating effect.

Garner et al. analyzed the non-dimensional model of cancer cell popu-
lation in order to estimate long-term behavior of quiescent and proliferating
cells. For simplicity, they set k = 1 and vary h to represent changes in the
effects of these growth factors.

2. Dirac time-delayed evolution

In the following, we focus our attention on the study of the biological
flow, when one variable coordinate is subject to time-delay.

It is well known that in the living world the physiological processes did
not occur simultaneously. We outlined in the previous section that Q, the
rate of the cell transition from the quiescent to the proliferating state has the

form
Ax

1 +Bx2
, because it increases with increasing x up to a certain point,

and then decreases as x becomes very large. In fact, the rate Q is always
low (negligible cf. Solyanik [11]), being extremely low when x becomes large.
Consequently, if the proliferating cell population is very large at a certain time
t1, then the cell transition process from the quiescent to the proliferating state
is very slow, controlling the number of proliferating cell population at another
time t2 = t1 + τ . This is the reason for the rate Q to become

Q(x(t), x(t− τ)) =
Ax(t)

1 +Bx2(t− τ)
.

In order to obtain the dynamical system with delayed argument, we recollect

that for any probability density f : R → R+ obeying

∫ ∞

0
f(s)ds = 1, the

transformation (perturbation) of the state variable x(t) ∈ R dependent on f
is the new variable x̃(t) defined by

x̃(t) =

∫ ∞

0
x(t− s)f(s)ds =

∫ t

−∞
x(s)f(t− s)ds (2)

Particularly, when f is the Dirac distribution of τ ≥ 0, i.e.,

f(s) = δτ (s) =

{
1, s = τ
0, s ̸= τ,

then the transform x̃(t) = x(t− τ) denotes the variable x with delayed argu-
ment. After the time-delay process applied to x, the system (1) becomes

x′(t) = x(t)− x(t)[x(t) + y(t)] +
hx(t)y(t)

1 + kx2(t− τ)

y′(t) = −ry(t) + ax(t)[x(t) + y(t)]− hx(t)y(t)

1 + kx2(t− τ)
,

(3)

with
x(0) = x0, y(0) = y0, x(θ) = φ(θ), θ ∈ [−τ, 0], τ ≥ 0,
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where the transform x̃(t) = x(t − τ) is defined by (2) and φ : [−τ, 0] → R
is a differentiable function which describes the behavior of the flow in the O
direction. In other words, the initial SODE (1) is replaced by a differential-
functional system (3).

3. Hopf bifurcation

The stationary points of the system (1) are solutions of the nonlinear
system 

x− x(x+ y) +
hxy

1 + kx2
= 0

−ry + ax(x+ y)− hxy

1 + kx2
= 0.

In ([1]) was proven that the system above always admits a solution (x∗, y∗)
situated in the first quadrant. Regarding the linearization of the delayed
system (2), we can state the following result:

Proposition 3.1. [8] The following assertions hold true:
a) The linearized SODE of the differential autonomous system with de-

layed argument (3) at its equilibrium point (x∗, y∗) is(
ẋ(t)
ẏ(t)

)
= M1

(
x(t)
y(t)

)
+M2

(
x(t− τ)
y(t− τ)

)
(4)

where

M1 =

( ∂f1
∂x(t)

∂f1
∂y(t)

∂f2
∂x(t)

∂f2
∂y(t)

)∣∣∣∣∣
(x∗,y∗)

,M2 =

( ∂f1
∂x(t−τ) 0

∂f2
∂x(t−τ) 0

)∣∣∣∣∣
(x∗,y∗)

,

and (f1, f2) are the components of the field which provides the SODE
(1).

b) The characteristic equation of the differential autonomous system with
delayed argument (2) is

det(λI −M1 − e−λτM2) = 0. (5)

Remark 3.1. The characteristic equation (5) has the form

λ2 + a1λ+ a2 + (a3λ+ a4)e
−λτ = 0 (6)

Let J(λ) be the characteristic quasi-polynomial function in (6). Looking
for the critical values of the parameter τ at which there is an exchange of
structural stability, we note that the solutions of the characteristic equation
(6) are of the form λ = λ(τ) = u(τ)± iω(τ) ∈ C and that the equation (6) is
equivalent to Re(λ) = Im(λ) = 0.
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A prerequisite for studying the Hopf bifurcation consists in finding the
critical values of the parameter τ , by imposing u(τ) = 0 and ω(τ) ̸= 0. Under
these assumptions, we infer the nonlinear system in terms of ω and τ{

−ω2 + a2 + a4 cosωτ + ωa3 sinωτ = 0,
a1ω + a3ω cosωτ − a4 sinωτ = 0.

(7)

By squaring every equation of the equivalent system{
a4 cosωτ + ωa3 sinωτ = ω2 − a2,
a4 sinωτ − ωa3 cosωτ = a1ω,

(8)

the relation cos2ωτ + sin2ωτ = 1 leads to

ω4 + (a21 − 2a2 − a3)ω
2 + a22 − a24 = 0,

which provides a preliminary overset for the solutions ω of (7).
We are interested only in the real non-negative solutions. The existence

of real solutions is obtained if and only if the condition a22 − a24 ≤ 0 is fulfilled
or the following system

(a21 − 2a2 − a3)
2 − 4(a22 − a24) ≥ 0,

a21 − 2a2 − a3 ≤ 0,
a22 − a24 ≥ 0,

is satisfied.
Since λ(τ) is a solution of the equation (6), deriving we get

λ/
{
2λ+ a1 + [a3 − τ (a3λ+ a4)] e

−λτ
}
− (a3λ+ a4)λe

−λτ = 0.

In order to obtain Hopf bifurcation, the transversality condition Reλ/(τ0) > 0
must be satisfied.

In the following, we shall use the values of the parameters corresponding
to three mouse mammary cell lines, namely 66, 67 and 68H ([6]).

3.1. The case of 66 cell line

In this case, the values of the parameters are a = 0.6, h = 1, k = 1,
r = 0.075.

Using Maple 11 software techniques, we can state the following result:

Proposition 3.1.1. a) The only equilibrium point acceptable from a
biological point of view (hence given by non-negative dependent variables) of
(3) is

(x∗, y∗) = (0.6089133165, 1.445867165).

b) The constitutive matrices of the linearized system (4) are

M1 =

(
−0.608913316 −0.1647024673
0.543435797 −0.1538628593

)
,M2 =

(
−0.5706064988 0
0.5706064988 0

)
.
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c) The coefficients of the characteristic equation (6) are

a1 = 0.7627761753, a2 = 0.1831943605, a3 = 0.5706064988, a4 = 0.1817754456.

d) The system (7) has two solutions (ω0, τ0) ∈ R∗ ×R∗
+, namely

ω01 = 0.3243946058, τ01 = 8.232227883,
ω02 = 0.07015086316, τ02 = 43.71641183,

with

Reλ/(τ01) = −0.001298881243 < 0,Reλ/(τ02) = −0.03994091271 · 10−4 < 0.

In conclusion, because the transversality condition is not satisfied, in the
case of 66 cell line, there is no critical value of the delay parameter τ for which
the Hopf bifurcation appear.

3.2. The case of 67 cell line

Considering the following values of the parameters a = 0.55, h = 1,
k = 1, r = 0.515, the programming techniques provide us the result described
below.

Proposition 3.2.1. a) The only equilibrium point acceptable from a
biological point of view (hence given by non-negative dependent variables) of
(3) is

(x∗, y∗) = (0.493776651, 2.582480174).

b) The constitutive matrices of the linearized system (4) are

M1 =

(
−0.493776651 −0.096791167
3.457295063 −0.1463375574

)
,M2 =

(
−0.8139847068 0
0.8139847068 0

)
.

c) The coefficients of the characteristic equation (6) are

a1 = 0.6401142084, a2 = 0.4068936928, a3 = 0.8139847068, a4 = 0.1979030635.

d) The system (7) has only one solution (ω0, τ0) ∈ R∗ ×R∗
+, namely

ω0 = 0.9647909953, τ0 = 2.271154272,

with
Reλ/(τ0) = 0.1023641139 > 0,

hence the transversality condition is satisfied.
While τ passes through τ0, the function u(τ) changes from negative to

positive values. It follows that the critical value of τ for which Hopf bifurcation
appears is exactly τ = τ0.

Based on Maple computations one can derive the following result:
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Proposition 3.2.2. For τ = τ0 the equation (6) has two imaginary
conjugate roots λ = ±iω, at least two roots with negative real part and no root
with positive real part.

3.3. The case of 68H cell line

In this case, the values of the parameters are a = 0.31, h = 1, k = 1,
r = 0.059 · 10−2.

We can state the following result:

Proposition 3.3.1. a) The only equilibrium point acceptable from a
biological point of view (hence given by non-negative dependent variables) of
(3) is

(x∗, y∗) = (0.0002801120344, 2.432345306 · 106).

b) The constitutive matrices of the linearized system (4) are

M1 =

(
0.809 −2.18 · 10−11

5.107925335 · 106 10−13

)
,M2 =

(
−0.3816969526 0
0.3816969526 0

)
.

c) The coefficients of the characteristic equation (6) are

a1 = −0.809, a2 = 0.0001113527722, a3 = 0.3816969526, a4 = 8.359163262·10−12.

d) The system (7) has no solutions (ω0, τ0) ∈ R∗ ×R∗.
Consequently, in the case of 68 cell line, there is no critical value of the

delay parameter τ for which the Hopf bifurcation appear.

4. Conclusions

As a consequence of the results above, in the case of 67 cell line, the can-
cer cell population time-delayed flow becomes subject to the following result,
known as the Hopf bifurcation theorem

Theorem 1. Let X ∈ X (Rn ×R) ∋ (x, τ), n ≥ 2 be a C∞ vector field,
which differentiably depends on the parameter τ and obeys the property that the
set E : X(x, τ) = 0 contains the isolated point x = x(τ), τ ∈ I ⊂ R. Consider
in a neighborhood of the stationary point x = x(τ) the linear approximation

dx

dt
= A(τ)x of the system

dx

dt
= X(x, τ), where A(τ) =

[
∂Xi

∂xj
(x(τ), τ)

]
.

Denote by λ1(τ), . . . , λn(τ) the eigenvalues of A(τ) and assume that

λ1(τ) = u(τ) + iω(τ), λ2(τ) = u(τ)− iω(τ) = λ̄1(τ).

For n > 2, additionally assume that Re(λk(τ)) < 0, k = 3, . . . n and that exists

an isolated value τ0 ∈ I such that u(τ0) = 0, ω(τ0) ̸= 0 and
du

dτ
> 0. Under

these hypotheses, one of the following assertions holds true:
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a) The stationary point x = x(τ0) is a center; for τ ̸= τ0 neighbor to τ0,
there exists no periodic orbit around x(τ);

b) There exists a number b > τ0 s.t. for each τ ∈ (τ0, b) there exists
an unique induced orbit around the stationary point x(τ) in a neighborhood of
this point. This 1-parameter family of closed orbits split at the stationary point
x(τ0), i.e., for τ → τ0, the diameter of the closed orbit varies with |τ − τ0|1/2.
In this case, for τ ≤ τ0, τ ∈ I, there exist no closed orbit neighbor to x(τ).

c) There exists a number a < τ0 s.t. for each τ ∈ (a, τ0) there exists an
unique closed orbit around the stationary point x(τ0) in one of its neighbor-
hoods. This 1-parameter family of closed orbits split at the stationary point
x(τ0), i.e., for τ → τ0, the diameter of the closed orbit varies with |τ − τ0|1/2.
In this case, for τ ≥ τ0, τ ∈ I, there exist no closed orbit neighbor to x(τ).
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