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Abstract  
In this paper we examine the construction of Clarke's derivative for vector-valued 

functions. We use another kind of Lipschitz functions, which allow us to leave the 
context of normed spaces. As base of the generalization we use the approach used by 
Clarke for real functions. For vector-valued functions, Clarke uses the Rademacher 
theorem, which is not available in general contexts. 
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1. Introductory notations and definitions 
 

 57

a b
 Let F  be an real ordered vector space, whose order relation is denoted by . If 

 , then we denote by ,  ,a b F∈ [ ],  a b  the order segment { }:x F a x b∈ . 

A set  is called full, if from A F⊆ ,  a b A∈ ,  it follows a b [ ],a b FA⊆ . If  is 
also a topological vector space and there exists a base of full neighborhoods of 0, then 

 is called a topological ordered vector space. The topological convergence is 
called 
F

τ -convergence. 
 An ordered vector space is called archimedian if for every  we have: 0x

1inf 0
n

x
n

= . 

 A normed lattice is an ordered vector space which is a lattice, and the norm 
satisfy the condition: 

x y x y⇒ ≤ . 
 

 Every normed lattice is archimedian and has closed positive cone. 
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( )xδ δ∈Δ

 In an ordered vector space, the order convergence of a generalized sequence 
 is calledω -convergence and it is defined as follows. 

 The sequence ( ) is xδ δ∈Δ
ω -convergent to x  if there exists two generalized 

sequence ( )ta
t T∈

 and ( )s s S
ab

∈
 such that the sequence  is increasing and has least 

upper bound 
t

x , the sequence sb  is decreasing and has greatest lower bound x , and 

for every ( ),t s T S∈ ×  there is 0δ ∈Δ  such that for every 0δ δ≥  we have: 

t sb
F

a xδ . 
 If F  is a topological ordered vector space, we say that the topology of  is 
ω -continuous if every generalized sequence which is decreasing to 0 (hence 
ω -convergent to 0) is also τ -convergent to 0. 
 

2. A class of continuous functions 
 

 We denote by E  a topological vector space, and by  a topological ordered 
vector space. We denote also by 

F
F+  the cone of positive elements of . F

E⊆ Let  be any set, and 0E 0:f E F→   be a vector valued function. 
 Using the topological structures of E  and , we obtain the usual notion of 
continuous function. But exists continuous functions which are not order bounded. 

F

 
 Example 1. Let [ ]0 0,1E = , [ ]0,1F C=  with the usual order, and the norm 

( ) ( )
1

0

x x t⋅ = ∫ dt . Let [ ] [ ]: 0,1 0,1f C→  be defined by ( )0 0f =  and for any 

( ]0,1 ( )x∈ , let f x  be a continuous function ( )y ⋅  defined on the interval [ ]  
taking real values, and being such that: 

0,1

  

    • 
1 1siny
x x⎟

⎛ ⎞
=⎜

⎝ ⎠
; 

 

    • ( )
1

0

y t dt =∫ x  . 

 
([ ])0,f Then, for every 0ε > , ε  is not order bounded, but ( )f x x ε= ≤ , 

for every [ ]0,x ε∈ , hence f  is continuous in 0x = , despite the fact that it is not 

order bounded in none of the neighborhoods of 0x = . 
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F On the other hand, we can take only the order structure of  and define the 
τω -continuous functions. For such a function, if ( )xδ δ∈Δ

 is a generalized sequence 

which is 0x  then ( )( )f xδ δ∈Δ
 is a generalized sequence which is τ -convergent to 

ω -convergent to 0. But such functions are not always topologically bounded. 
 
 Example 2. Let [ ]0 0,1E = , and  be the space of those real functions defined 

on [  which have bounded derivative. We consider on  the usual order, and the 
norm defined by: 

F

]0,1 F

( )
[ ]

( )
[ ]

( )
0,1 0,1

max max '
t t

x x t x t
∈ ∈

⋅ = + . 

 Let [ ]: 0,1f F→  be defined by ( ) 0f x = , if 
1
n

x ≠ , and for 
1x
n

=  let 

( )f x F∈  be a function defined on the interval [ ]0,1 , in the following way: 

( )( )
( )2 11 ,  for t 0,

n
10,              for t ,1 .
n

nt
f x t

⎧ ⎡ ⎤− ∈⎪ ⎢ ⎥⎪ ⎣ ⎦= ⎨
⎛ ⎤⎪ ∈⎜ ⎥⎪ ⎝ ⎦⎩

 

 Then 
1f
n

⎛ ⎞
⎜ ⎟⎜ ⎝ ⎠ n

⎛ ⎞
⎟

⎝ ⎠
0 is a decreasing sequence to , and 

1f
n

⎛ ⎞ = +∞⎜ ⎟
⎝ ⎠

lim
n→∞

. 

Because for 
1
n

≠x  we have ( ) 0f x = , it follows that f  is ω -continuous in , 

but it is not 

0x =

τ -bounded in none of the neighborhoods of 0x = . 
 

 We suppose now that  is order complete. Combining in  the topological 
structure with the order structure, we introduce the following notion of continuous 
function. 

F F

 For a neighborhood V  of 0x  such that ( )h V  is order bounded, we denote by 

 the least upper bound of the set ( )h Vsup ( )h V  and by ( )inf  the greatest 
lower bound of the same set. We obtain in this way two generalized sequences 

h V

( )( )sup h V
V∈V )Vh V and ( )(inf

∈V

0

 of elements of . F
  

 Definition 1. A function  is called m-continuous in 0:h E F→ 0x E∈  if it is 

order bounded on a neighborhood of 0x  and: 
 



( )( ) ( )( ) ( )0lim sup lim inf
V V

h V h V h xτ τ
∈ ∈

− = − =
V V

. 

 
 The definition implicitly suppose the existence of limits involved. 

 
E  is a normed space, a function : We recall that if f E F→  is called o-

Lipschitz if there is an element L  of F+  such that for every ,x y E∈  we have: 

( ) ( )-L x-y L x-yf x f y− . 
 
 Proposition 1. Let E  be a normed space. If 0:f E F→  is locally o-Lipschitz, 
then f  is m-continuous.   
 

( )0;V B x r= 0 be a ball of centre  Proof. Let 0
0x E
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∈ , x  and radius , 

on which 

*
+r∈

f  is o-Lipschitz, with Lipschitz constant L F+∈ . Then we have  

( ) ( )-L x-y L x-y ,  x,y Vf x f y− ∀ ∈ . 

 Taking 0y x= , we have: 

( ) ( ) ( )0 0f x -L x-y f x +L x-y ,  x Vf x ∀ ∈ . 

 It follows that: 

( ) ( ) ( )0 0

x V
f x -Lr sup f x +Lrf x

∈
. 

 Hence ( )( ) ( )0lim sup
V

h V f xτ − = . In the same way we obtain that  

( )( ) ( 0lim inf
V

h V f xτ − = ) , hence f  is m-continuous.  

 
 Proposition 2. Let 0

0x E∈  and  be a function which is m-

continuous in 
0:h E F→

0x . Then  is h τ -continuous. 
 
 Proof. Let V  be a neighborhood of 0

0x  on which  is order bounded, and 

 any other neighborhood. Denote 

h

0V V⊆ ( )inf h V  with ( )i  and su  with 

. We have, for 

V ( )p h V

( )s V x V∈ :  

( ) ( ) ( ) ( ) ( ) ( )0i V s V s V -i Vh x h x− − .     (1) 

( If U  is a full neighborhood of , because the generalized sequences 0 )i  and 

 are 

V

s V( ) τ -convergent to  there is a neighborhood V  of ( 0h x ) U
0x  such that if 

 then UV V⊆ ( ) ( )( )s V -i V U± ∈ . Because we can choose U  full, it follows that 



the order interval ( ) ( ) ( ) ( )i V -s V ,s V -i V⎡⎣ ⎤⎦  is contained in U . Hence from (1) we 

have: 
( ) ( )0 ,h x h x U x V− ∈ ∀ ∈ , 

 
which means that  is h τ -continuous in 0x .  
 
 We will use the following lemma (the proof is adapted from [3]): 
 

F+ Lemma 1. Let  be a topological ordered vector space. If F  is closed, then 
every generalized sequence from  which is F τ -convergent and increasing, has a 
least upper bound and this coincides with the topological limit of the sequence. It is 
also ω -convergent to this limit. 
 
 Proof. Let ( )xδ δ∈Δ

 be such a sequence, let l  be his limit. If , 'δ ∈Δ  'δδ δ≤
'

 

then we have x
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xδ δ  and taking the limit following 'δ  we obtain x lδ

F+ l
 because 

the cone  is closed. Hence  is an upper bound of the sequence. If m  is another 
upper bound, we have x mδ  for every δ ∈Δ  hence taking the limit we obtain 

. Hence  is the least upper bound of the sequence.  l m l

F+

h

 
 Proposition 3. Let  be any function. We suppose that  is closed. 
We consider the following two assertions: 

0:h E F→

  
    1)   is m-continuous at 0

0x E∈ , 
 
   2)  ( ) ( ) ( )00

0lim lim
x xx x

h x h x h x
→→

= = .  

   
 

 Then: 
a. 1) ⇒  2). 
b.  If the topology of  is F ω continuous, then also 2) ⇒ 1). 
 

 Proof. a. Because  is m-continuous, we have: h
( ) ( ) ( )0lim V lims V

V V
i h xτ τ− = = − , 

hence,  being closed, we obtain with lemma 1:  F+

( ) ( ) ( ) ( )00 0

0lim sup V lim s V
V xx x V x

h x i h xτ
∈→ ∈

= = − =
VV

. 



 
 In the same way, we have: 

( ) ( )0

0lim
x x

h x h x
→

= . 

b. The hypothesis means: 
( ) ( ) ( )

00

0 sup V inf s V
V xV x

h x i
∈∈

= =
VV

, 

hence ( ) ( )0h xVi ↑  and ( ) ( )0Vs h x↓ . This means  and 

 hence  and  because the topology of 

 is 

( ) ( )0i h x
ω
→V

( )0h x )x( )Vs
ω
→ ( ) ( 0Vi h

τ
→ ( ) ( )0Vs h x

τ
→

F ω -continuous. 
 Hence h  is m-continuous.  
 
 
 3. Clarke’s subdifferential 

 
 This kind of continuous functions is useful to define Lipschitz functions and 
Clarke’s derivative in spaces which are not metric spaces.  
 
 Definition 2. A function  is called positive subhomogenuous, if  :A E F→

 
( ) ( ) ,  x E, , 0A A xλ λ λ λ∀ ∈ ∀ ∈ ≥ . 

 
 Definition 3. A function 0:f E E F⊆ →  is called A -Lipschitz on , if 
there is a positive subhomogenuous and m-continuous function , such that 

  and  

0E

E,∈
:A E F→

( ) ( ) ,  xA x A x= − ∀
 

( ) ( ) ( ) ( ) 0,  x,y EA x y f x f y A x y− − − − ∀ ∈ . 
 
 Definition 4. Let 0:f E E F⊆ →  be an A-Lipschitz  function and let 

. The Clarke’s directional derivative of  in  is the function 0
0x E∈ f 0x

( )0 0 ;. :f x E → F  defined by  

( ) ( ) ( )
0

0 0

0
; lim sup

x x

f x v f x
f x v

λ

λ
λ→

+ −
= . 

   
It is a good definition, because: 

( ) ( ) ( ) ( )f x v f x A v
A v

λ λ
λ λ=

+ −
± < = , 
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and  
( ) ( )

( )

( ) ( )
0

0
0,0

0
lim sup inf sup

x

def

V Vx x x V

f x v f x f x v f x

λ εε
λ

λ λ
λ λ

∈>

∈→ ∈

+ − + −
=  exists, because  

is order complete. 

F

  
 Lemma 2. Let 0, :f g E E F⊆ →  be two functions, order bounded in a 
neighborhood of  Then: 0Ea∈

 
( ) ( )( ) ( ) ( )limsup limsup limsup

x a x a x a
f x g x f x g x

→ → →
+ + . 

 
 Proof. Let ( ) ( )( )inf sup

aV V x V
c f x g

∈ ∈
+ x  where a∈V V  is the family of all 

neighborhoods of . Let  fixed. Then: a 0
aV ∈V

 
( ) ( )( ) ( ) ( )( )

0

inf sup inf sup
a a

V V

V Vx V x V
f x g x f x g x

⊆

∈ ∈∈ ∈
+ = +

V V
, 

because the generalized sequence ( ) ( )( ){ }sup
a

x V V
f x g x

∈ ∈

+
V

 is decreasing. We have:  

( ) ( )( ) ( ) ( ) 0sup sup sup ,  V V ,  V a
x V x V x V

c f x g x f x g x
∈ ∈ ∈

+ + ∀ ⊆ ∈V , 

and, successively: 
( ) ( )sup sup

x V x V
c g x f x

∈ ∈
−  

( ) ( )
0

inf sup limsup
x aV V x V

c g x f x
→⊆ ∈

⎛ ⎞−⎜ ⎟
⎝ ⎠

 

( ) ( )
0

sup sup limsup
x ax VV V

c g x f x
→∈⊆

⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )
0 0

limsup sup sup sup
x a x VV V x V

c f x g x g x
→ ∈⊆ ∈

⎛ ⎞− =⎜ ⎟
⎝ ⎠

. 

Because V  is arbitrarily, it follows: 0

F

( ) ( ) ( )limsup inf sup limsup
ax a V x ax V

c f x g x g x
→ ∈ →∈

⎛ ⎞− =⎜ ⎟
⎝ ⎠V

. 

Hence, for every c  for which ∈ ( ) ( )( )limsup
x a

c f x g x
→

+  we have: 

( ) ( )limsup limsup
x a x a

c f x g x
→ →

+  

so  
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( ) ( )( ) ( ) ( )limsup limsup limsup
x a x a x a

f x g x f x g x
→ → →

+ + . 

 Lemma 3. Let E  be a topological vector space. The family of functions 
[ ]: ,  t 0t E E Fϕ × → ∈ ,1 , defined by: 

( ),t x y x tyϕ = +  
is echicontinuous. 
 
 Proof. Let V  an fundamental system of neighborhoods of 0  containing 

balanced neighborhoods. Then 
0

{ }
0

0 0 0V +ty
V ∈
V  is a fundamental system of 

neighborhoods of . If 0 ]ty (t 0,1∈  we have: 

( )1 1
0 0 0 0 0 0V +tyt t V y V y− −= + ⊇ + , 

because  is balanced. It follows: 0 V

( ) ( )1
0 0 0 0 0 0 0 0V +y , , 0,t t t V y V ty V t−⊆ + = + ∀ ∈ ∀ ≥V  

because for t  the inclusion is obvious. Let 0= 0 0i. . U+U VU e∈ ⊆V . Then we 
have:  

( ) ( )0 0 0 0 0 0

0 0 0

,t U x U y U x t U y U x U ty
V x ty

ϕ + + = + + + ⊆ + + +

⊆ + +
 

hence ( ){ } [ ]0,1
,t t

ϕ
∈

⋅ ⋅  is equicontinuous.  

  
 Theorem 1. Let 0:f E E F⊆ →  be a function locally A-Lipschitz on . 
Then: 

0E

);.1. (0 0f x  is positive homogeneous and subaditive on E , and we have: 

( ) ( )0 ,f x v A v±  
A  is the Lipschitz constant of f . where 

2. The function ( ) ( )0, ,x v f x v  is upper semicontinuous. 

3. The function (0 0;.)f x  is A-Lipschitz on E  (with Lipschitz constant A ). 

4. ( ) ( ) (00 , , )f x v f x v− = − . 
 
 

 Proof. 1. Clearly, ( ) ( )0 ,f x v A v±  and ( ) ( )0 0, ,f x v f x vλ λ= , if 0λ ≥ . 
We have: 
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 0

0 0

0

;

limsup limsup

limsup ; ;

y x y xt t

y x t

f x v w

f y tv tw f y f y tv tw f y tw
t t

f y tw f y
f x v f x w

t

→ →

→

+ =

+ + − + + − +
+

+ −
+ = +

 

hence ( )0 ,.f x  is subaditive. 

2. Let 0
0 0

0 0x E ,  E, V
x

v∈ ∈ ∈V  be arbitrarily. With Lemma 2, let 

0 01 1 0 2,  ,  
x x

U U V U∈ ⊆V V∈
0tv

0

, be such that: 

1 2 0U tU V+ ⊆ +  .         (2) 

(2) Let  and t ≠ 1y U∈ , be arbitrarily, and 0
i 0 ix E ,  x ,  x∈ →  

. Let i0
iE, v ,  iv v i∈ → ∈ 0 NN ∈  be such that  and . 

Then from (2), it follows 
0 1ii i x U≥ ⇒ ∈ i 2v U∈

0'iy tv y tv+ = +  with 0'y V∈ . Hence we have: 

( ) ( ) ( ) ( ) ( ) ( )0' ' 'i
f y tv f yf y tv f y f y f y

t t t
+ −+ − −

= + . 

But , hence we obtain: (' iy y t v= + − )0v

( ) ( ) ( ) ( ) ( )( ) ( )00' ' ii
f y t v v f yf y tv f yf y tv f y

t t t

+ − −+ −+ −
= + . 

 Taking the least upper bound following 1y U∈ , we have: 

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

1 0

0 0

0

'

0 0

'

0

' '
sup sup

' '
sup sup

.

i

y U y V

i

y V y V

i

f y tv f yf y tv f y
t t

f y t v v f y f y tv f y
t t

A v v

∈ ∈

∈ ∈

+ −+ −
+

+ − − + −
+ +

+ −

 

 Taking now the supremum following ( ]0,t ε∈ , we have:  

( ) ( ) ( ) ( ) ( )
1 0

0 0

0
0

'

' '
sup sup

t t

i
i

y U y V

f y tv f yf y tv f y
A v v

t t
ε ε< ≤ < ≤

∈ ∈

+ −+ −
+ − . 

 On the other hand,  
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( )
( )

( ) ( )

( )

( ) ( )

( )

( ) ( )
0 0,

1 10 0, 0,

0 , inf sup

inf sup sup

xi
t

t t

i
i i V y V

i i

V U y V y U

f y tv f y
f x v

t

f y tv f y f y tv f y
t t

ε ε

ε ε ε

> ∈

> ∈ ∈

∈ ∈

⊆ ∈ ∈

+ −
=

+ − + −

V

 

 66

for every . Hence, for every 0i i≥ 00 x
V ∈V  there is an 0i ∈ , such that  

implies: 
0i i≥

( ) ( ) ( ) ( )
0

(0, ]

0
0 0

'

' '
; sup

t

i i i
y V

f y tv f y
f x v A v v

t
ε∈

∈

+ −
+ − . 

 We take first least upper bound following i  and we obtain: n≥

( ) ( ) ( ) ( )
0

(0, ]

0
0 0

'

' '
sup ; sup sup

t

i i i
i n y V i n

f y tv f y
f x v A v v

t
ε∈

≥ ∈ ≥

+ −
+ − . 

 
n∈ :  Now we take greatest lower bound following 

( ) ( ) ( ) ( )
0

(0, ]

0
0 0

'

' '
inf sup ; sup inf sup

t

i i in ni n y V i n

f y tv f y
f x v A v v

t
ε∈

∈ ∈≥ ∈ ≥

+ −
+ − , 

ε : And, finally, greatest lower bound following  and 0V

( ) ( ) ( ) ( )
0 0 0

0 (0, ]

0
0 0

'

' '
inf sup ; inf sup inf sup .

x
t

i i in V ni n y V i n

f y tv f y
f x v A v v

t
ε ε> ∈

∈ ∈ ∈≥ ∈ ≥

+ −
+ −

V
 

Hence we have the relations: 

( ) ( ) ( ) ( )

( )
0 0 0

0 (0, ]

0
0 0

'

0 0 0

' '
limsup ;   inf sup limsup

, ,

x
t

i i ii V iy V

f y tv f y
f x v A v v

t

f x v
ε > ∈ ∈

→∞ ∈ →∞∈

+ −
+ − =

=

V

 
A  being m-continuous, we have: because 

( )0limsup 0ii
A v v

→∞
− = . 

 
 3. The Lipschitz condition implies: 

 ( )( ) ( ) ( ) ( ) ( )( )A t v w f y tw f y tw f y tw A t v w− − + + + + + −  
which means: 



( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).

f y tw f y f y tw f y
A v w

t t
f y tw f y

A v w
t

+ − + −
− − +

+ −
+ −

 

 Taking li , we obtain: 
0

up
ε >

m s
xV∈V

( ) ( ) ( ) ( ) ( )0 0 0; ; ;A v w f x w f x v f x w A v w− − + + − , 
which is equivalent to: 

( ) ( )( ) ( )0 0; ;f x v f x w A v w± − − , 

hence 3. 
 
 4. We have, using the notation 'u x tv= + : 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

0

' 0 0

0

' '
; lim sup limsup

; .

x x u xt t

f x tv f x f u tv f u
f x v

t t
f x v

→ →

− − + − −
− =

= −

=

0E

 

 
 Lemma 4 (see [4]). If  is an order complete vector lattice,  a subspace of F
E ,  a sublinear function, and  is a linear operator upper 
bounded by 

:p E F→ 0 0:U E F→
p , then there is a linear extension U  of U  which is also upper 

bounded by . 
0

p

E

 
 
 Corollary 1. In the context of the previous lemma, if  is a sublinear 
function, then for every  there is a linear operator  such that  

:p E F→

0v ∈ :U E F→

( ) ( )0 0U v p v= and ( ) ( ) ,  v EU v p v ∀ ∈ . 
 

 Proof. We take { }0 0 :E vλ λ= ∈  and we define  by  0 0:U E F→

( ) ( )0 0U v p vλ λ= . 

Because  is subaditive and positive − homogeneous, we apply the previous 

lemma. The operator U  has also the property 

p
( ) ( )0 0U v p v= . 

 
 Definition 5. The subgradient of 0:f E E F⊆ →  at 0

0x E∈  is the set  

( ) ( ) ( ) ( ){ }0 0£ E,F :  U v ; ,  v Ef x U f x v∂ = ∈ ∀ ∈ . 
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( )
 Theorem 2. We suppose  that the conditions of theorem [1] are satisfied. Then: 

1. The set f x

)x

∂  is non-empty and convex. 

2. Every  is m-continuous and we have  (U f∈∂

( ) ( ) ,  v EU v A v± ∀ ∈ . 

3. ( ) ( ) ( ){ }0v E,    ; max  U v :  f x v U f x∀ ∈ = ∈∂ . 
 
 Proof. 1. The function ( )0 ;.f x  is sublinear. From Corollary (1), . 
We have: 

( )∂ ≠ ∅f x

( ) ( ) ( )0 ; ,  v EU v f x v A v ∀ ∈ , 
hence: 

( ) ( ) ( ) ( ) ( )0 ; ,  vU v U v f x v A v A v E− = − − − = ∀ ∈ , 
thus: 

( ) ( ) ,  v EU v A v± ∀ ∈ . 

 Because A  is m-continuous, it follows that U  is m-continuous. 
 
 2. Let 0v E∈ . From Corollary (1) it follows that there is U  a linear 
operator, such that: 

0 →:E F

( ) ( )0
0 ; ,  v EU v f x v ∀ ∈ , and ( ) ( )0

0 0 0;U v f x v= . 

{ }( )∈∂ ( )0U f x  and ( ) ( )0
0 0  ; max  U v :  f x v U f x= ∈∂ . Hence 

 
 We will use next the following result. 
 
 Proposition 4 (see [1]). Let ,  E F   be two topological vector spaces,  a 

separate one. A subset  of 

 F
H ( ),  E FL  is relatively compact in ( ),  E FL , endowed  

with the simple convergence topology, if and only if for every x E∈  the set: 
( ) ( ){ }:x H x H= ∈H H  

is relatively compact in .  F

 F

 
 Proposition 5. We suppose that the conditions of theorem [1] are satisfied, and 
that the topology of  is generated by a norm ⋅ . 
 If the norm is monotone, which means: 

x y x y
=

± < ⇒ ≤  

then: 
  
    1. ( ) ( , )f x E∂ ∈L F  is echicontinuous.  



    2. If for every  the intervals a,b  F∈ [ ]a,b  are ( )f x∂  is σ -compact, then 

σ -compact  in (s ,E F )σL  where Fσ  is endowed with the weak topology 

( )*,E F )σ , and in ( ,E FσL  is considered the topology of simple convergence.  

 Proof. 1. For every ( )U f x∈∂  we have ( ) ( ) ,  U v A v v E± ∀ ∈  hence by 

the monotonicity of norm, it follows that ( ) ( ) ,  U v A v≤  hence the 

echicontinuity of the family ( )f x∂ . 

 2. We show that ( )f x∂  is echicontinuous in ( )s ,E FσL

F
 too. Indeed, for every 

0E σ⊆

0G E⊆

 open and containing 0, there is G  open neighborhood of 0 such that 

. Then there is V  neighborhood of 0 in 

F⊆

E  such that ( ) 0U V , for 

every 

G E⊆ ⊆

( )U ∈ f x∂ , because ( )f x∂  is echicontinuous in ( , )E FL

)
. It follows that 

(f x∂  is echicontinuous in ( )s ,E FσL  too. 

 We have  ( ) ( ) ( )A v U v A v
= =

− < < , hence the orbit ( ) ( ){ }:U v U f x∈∂ is 

relatively σ -compact, because the intervals are relatively σ -compact. It follows 
from Proposition (4) that ( )f x∂  is relatively σ -compact in ( ),E Fs σL . On the 

other hand, ( )f x∂  is closed in ( )s ,E FσL . Indeed, let ( )Uδ δ∈Δ
 be a generalized 

sequence such that Uδ  is pointwise convergent to U . Let *, 0Fα α∈ ≥  we have: 

( ) ( )0;   ; ; ,  v EU v f x vδα α≤ ∀ ∈ . 

Taking the limit, we obtain: 
( ) ( )0;   ; ; ,  v EU v f x vα α≤ ∀ ∈ . 

Because the positive cone of  is closed and F α  is arbitrarily, it follows that ([3], 
prop. 1, pp. 92): 

( ) ( )0 ; ,  U v f x v v E∀ ∈ , 

hence U f . Thus ( )x )∈∂ (f x∂  is closed in ( )s ,E FσL , hence compact.  
 
 4. Relation with other derivatives 
 
 Definition 6. A normed lattice of type (M) is a normed lattice F in which the 
norm satisfy the condition:  

{ }0 , max , ,  x,y Fx y x y x y⇒ ∨ = ∀ ∈ . 

 Definition 7. A normed lattice of type (L) is a normed lattice F in which the 
norm satisfy the condition: 
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0 ,x y x y x y⇒ + = + . 



 The link between these two types is showed in the following well-known 
proposition. 
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F *
  

F Proposition 6. If  is a normed lattice of type (M), then  τ   is a normed 
lattice of type (L). 
 
 Theorem 3. Let 0:f E E F⊆ →  a function,  a neighborhood of 0E x  in the 
Banach space E , and   a separable Banach lattice of type (M). The following 
conditions are equivalent: 

F

 i) f   is strictly-differentiable at x , with the strict derivative denoted U ; 
 ii) f  is o-Lipschitz around x  and for every v E∈  the limit  

( ) ( ) ( )
0

'

'
lim

t

not

x x

f x tv f x
U v

t
τ

→

+ −
− =  

exists. 
 
 Remark 1. The implication  is true without the condition  separable 
and of type (M).   

)ii i⇒ ) F

)ii
)ii

 
 Proof.  We suppose that  is true. Then it is known that the equality 
stated by  take place. We show next that 

)i ⇒ )i
f  is o-Lipschitz around x . If it is not the 

case, for every neighborhood V  of x , and for every ,  0p F p+∈ ≥   there is 0≠p
', ''x x V∈ , such that: 

( ) ( )' '' . ' ''f x f x p x x− − . 

Let 
1;nV B= x
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

0n, np=  with { }\ 0p F+∈ . Then there is p ',n ''nx x  two 

sequences which are convergent to x , such that: 
( ) ( ) 0' '' . ' '' ,  nn n n nf x f x np x x− − ∀ ∈ , 

which means: 
( ) ( ) 0' '' . ' '' ,  nn n n nf x f x np x x F+− ∉ − − ∀ ∈ . 

Because the positive cone  is closed, the set F+ 0. ' ''n nnp x x F+− −  is closed and 

convex, hence with the separation theorem, there is *
n Fτα ∈  such that 1=  and  nα

( ) ( ) 0; ' '' ; ,  y . ' '' ,  nn n n n n nf x f x y np x xα α− ≥ ∀ − ∀ ∈

n 0

. 

≥  and, in particular,  It follows that α

( ) ( ) 0; ' '' ; . . ' '' ,  nn n n n n nf x f x p n x xα α− ≥ − ∀ ∈ .   (3) 

Let t  and , be determined by the condition: n > nv E∈0



'' 'n n n nt v x x= − ,
1 ,nv n
n

= ∀ ∈ . 

Then we have: 
'' ' 2'' ' . 0n n

n n n
n

x x
t n x x n

v n
−

= = − ≤ → . 

From (3) it follows: 
( ) ( ) 0; ' ' ; . . ,  nn n n n n n n nf x t v f x t p n vα α+ − ≥ ∀ ∈ , 

and so: 
( ) ( )

0

' '
; ; .n n n n

n n
n

f x t v f x
p n

t
α α

+ −
≥ ∀ ∈,  n

*F

.   (4) 

Because the space  τ  is of type (L), the set: 

{ }* : 0,  and 1S Fτα α α+ = ∈ ≥ =  
*
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is convex, hence σ  closed, thus *σ  is compact by Alaoglu’s theorem. Because  is 
separable, the closed unit ball in the dual 

F
*Fτ   

( ) { }* *0,1 :  1B Fτα α= ∈ ≤  

endowed with the topology *σ  is a metrizable space. We can hence suppose that 
( )n n
α  is *σ -convergent to some 0 Sα +∈ . If 0lim ; 0nn

pα = , then 0α

0

0; 0p = , 

hence p  is a support point for F+ . But because the subspace generated by  is 
, and  is separable, there is a point of 

 F+

 F F F+  which is not a support point for . 

We suppose that 

 F+

0p  is such a point. Then 0lim ; 0nn
pα ≠ . Hence, for every 0ε >  

there is   such that nε ∈ 0;n pα ε≥  n nε∀ ≥ . From (4), we obtain: 

( ) ( )' '
; . ,  nn n n n

n
n

f x t v f x
n n n

t
, εα ε

+ −
≥ ∀ ∈ ≥ .   (5) 

 On the other hand, the set { } { }: 0nK v n= ∈ ∪  is compact in E  and from 

the definition of the strict derivative, it follows that for every ' 0ε >

'ε ∈
 there is 

such that for every n 'n nε∀ ≥ , we have: 

( ) ( ) ( )' '
',  v Kn n n n

n

f x t v f x
U v

t
ε

+ −
− ≤ ∀ ∈ . 

Taking  and nv = 'v ε ε=  we obtain: 



( ) ( ) ( )' 'n n n n
n

n

f x t v f x
U v U

t
ε ε

+ −
≤ + ≤ + . 

 Hence the sequence 
( ) ( )' 'n n n n

n n

f x t v f x
t

∈

+ −⎛ ⎞
⎜
⎝ ⎠

⎟

( )n n

 is bounded. Also, the 

sequence α  is bounded too. But because the bilinear mapping ( ), ,y yα α  

from  to  is (* F Fτ ×
*σ τ× )-continuous, this contradicts (5). Hence  f  is 0-

Lipschitz around x . 
  It is known that if the equality from  is true, and ) )i⇒ iiii ) f  is locally 
Lipschitz in x , then x . Let f  is strictly differentiable in L F∈  be the Lipschitz 
constant of f .  Because the norm of  is monotone, for a neighborhood V  of F x  
we have: 

( ) ( ) .f x f y L x y− ≤ −  

f  is locally Lipschitz at x , hence it is strictly-differentiable at Hence, x , and U  is 
the strict derivative of x . f  at 
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 Proposition 7. Let E  be a topological vector space,  a topological ordered 
vector space, which is order complete. Let 

F
0:f E E F⊆ →  be an A-Lipschitz 

function in a neighborhood of 0intx E∈  having a Gateaux derivative ( )gD f x  

Then ( ) (g )D f x f∈∂ x . 

 
 Proof. By hypothesis, there exists ( ) :gD f x E F→  a linear operator such 
that: 

( ) ( ) ( ) ( )( )'

0
; lim gt

f x tv f x
f x v D f x v

t
+ −

= = . 

 We have, for every V  and every x∈V 0ε > :  

( ) ( )

( )

( ) ( ) ( )
0,

sup ,  t 0,
y V

s

f x tv f x f y sv f y
t s

ε

ε
∈

∈

+ − + −
∀ ∈ , 

Hence: 
( ) ( )

( )

( ) ( )
0

0,

lim sup ,  ,  >0xt y V
s

f x tv f x f y sv f y
V

t s
ε

ε
∈

∈

+ − + −
∀ ∈ ∀V . 

 



 Finally,  
( ) ( )

( )

( ) ( )
0

0 0,

lim   inf sup ,  
xV Vt y V

s

f x tv f x f y sv f y
t s

ε ε

∈ ∈
> ∈

+ − + −
 

which means ( ) (g )D f x f∈∂ x . 
 
 Corollary 2. In this context, because the Frechet derivative ( )Df

)
x  and the 

strict derivative (sD f x  are Gateaux derivatives too, we have ( ) ( )Df x f x∈∂  and 

( )s ( )D f x ∈∂f x

F

. 
 
 Lemma 5. Let  be a normed lattice in which the unit ball is order bounded. 

Let F∈  be arbitrarily. If we denote 
1inf ;ni B x
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, and 
1sup ;s B x
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

x n =

n ns

 

then we have: 
sup inf

nn
i x= = . 

 

 Proof. Denote 
1;nB B x
n

⎛= ⎜
⎝ ⎠

⎞
⎟ 1. Let u  be an upper bound for B . Because 

1nnB B −⊆  we have . If n' ,  x' Bx u ∀ ∈ ny B∈ , then: 

( )1 1 1 1y x ny nx ny n x x
n

− ≤ ⇒ − ≤ ⇒ − − − ≤ , 

Hence, , thus we have ( )1ny n x− − ∈ 1B ( )1ny n x u− − , which means 

1 1y x
n n

+ u x+ . So: 

( ) *1sup ,  nnx B x u x
n

+ + ∀ ∈ , 

and we have from this: 
inf sup infn nn n

x B s= =  

because a normed lattice is an archimedian space. 
Analogously, we obtain supinf supn n

n n
B s x= = . 

 
 Proposition 8. We suppose that the topology of  is defined by a norm and 
that the unit ball is order bounded. If 

F
0:f E E F⊆ →  is strictly-differentiable at x  
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x , then ( ) ( ){ }sf x D f x∂ =  where ( )and it is A-Lipschitz around sD f x  is the strict 
derivative of f  at x . 
 
 Proof. By proposition (7), ( ) ( )sD f x f x∈∂ . Conversely, we show that: 

( ) ( )( )0 ; sf x v D f x v=  
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For every  there is a neighborhood  of n nV x  and there is 0nε >  such that: 

( ) ( ) ( )( ) ( )n n

' ' 10; ,  x' V ,  0,s

f x v f x
D f x v B

n
λ

λ ε
λ

+ − ⎛ ⎞∈ + ∀ ∈ ∀ ∈⎜ ⎟
⎝ ⎠

. 

It follows that: 

( )

( ) ( ) ( )( )
n

n

x' V
0,

' ' 1sup sup 0;  s

f x v f x
D f x v B

n
λ ε

λ
λ∈

∈

+ − ⎛ ⎞⎛ ⎞≤ + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. 

We have: 
 

( )
( )

( ) ( )

( )

( ) ( )

( )( ) ( )( )

( )( )

n n

n n

0

=

x' V x' V
0 0, 0,

' ' ' '
; inf sup inf sup

1 1inf sup 0; inf sup 0;

xV n

s sn n

s

f x v f x f x v f x
f x v

D f x v B D f x v B
n n

D f x v

ε λ ε λ ε

λ λ
λ λ∈ ∈ ∈

> ∈ ∈

+ − + −
=

⎛ ⎞⎛ ⎞ ⎛ ⎞+ = + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

V

)

 
 
Hence, ( ) ( )(0 ; sf x v D f x v . The converse inequality is true, hence the wanted 
equality.  
 

ω -continuous. If  Proposition 9. We suppose that the topology of  is F f  is A-

Lipschitz around x  and ( ) { }f x U∂ = , ( ),EU F∈L  then f  is strictly-

differentiable in x  and ( )sD f x U= . 
 
 Proof. We show that ( ) ( )0 ; ,  v Ef x v U v= ∀ ∈ . We have 

. If there is '  such that ( ) ( )0 ; ,  f x v U v≥ ∀v E∈ v ( ) ( )0 ; ' ' ,  v Ef x v U v ∀ ∈  

then from theorem (1), there is   a continuous linear operator such that: ' :U E F→
( ) ( )0 ; ' ,  v Ef x v U v ∀ ∈ , 
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( )' 'and ( )0 ;f x v U= v . Hence ( )'U f x∈∂ . Because ( ) ( )' ' 'U v U v≠  we have 

( ) { }f x∂ U≠ , a contradiction. Hence ( )0 ;.f x U=  and ( ) ( )0 0; ;f x v f x v− = − . 

 We take now a generalized sequence ( )V V
x

∈V
 indexed with the neighborhoods 

of x , such that Vx V∈ . Then the sequence is τ - convergent to x . Also, we take a 

generalized sequence ( )V V
t

∈V
 of real numbers, decreasing to 0 .  

( ) ( )

( )

( ) ( )

0,

sup  

v

v v v

y Vv
t

f x t v f x f y v f y
t

λ

λ
λ∈

∈

+ − + −
. 

The right part is a generalized sequence, ω -convergent to ( );0f x v . Because the 

topology of  is ( ) ( );0ω -continuous, it is also τ - convergent to F f x v U v= . 
Hence we have: 

( ) ( ) ( )lim v v v

V
v

f x t v f x
U v

t∈

+ −
V

. 

On the other hand, because ( ) ( )0 0; ;f x v f x v− = −  we have: 
 

( )
( )

( ) ( )

( )

( ) ( )0
x' V

0, 0,0 0

' '
; sup inf sup inf

x x
y WV W

f x v f x f y v f y
f x v

λ ε λ εε ε

λ λ
λ λ∈ ∈∈ ∈

∈ ∈> >

− − + −⎛ ⎞
= − =⎜ ⎟

⎝ ⎠V V
, 

 
where we have denoted 'x v yλ− = . Also we have: 
 

( ) ( )

( )

( ) ( )

0,

inf  
v

v v v

y V
v t

f x t v f x f y v f y
t

λ

λ
λ∈

∈

+ − + −
. 

 
ω -convergent to ( ) ( )0 ;f x v U v= , hence The right part is τ -convergent, because 

the topology of  is F ω -continuous. Taking the limit, we have: 
( ) ( ) ( )lim , , 0v v v

n nV
v

f x t v f x
U v x x t

t∈

+ −
= ∀ → ∀ ↓

V
, 

hence: 
( ) ( ) ( )

x' 0
0

' '
sup ,  v E
t

f x tv f x
U v

t→

+ −
= ∀ ∈ . 

Now from theorem (3) it follows that f  is strictly differentiable in x  and 

( )sD f x U= .  
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