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Abstract  
Our purpose is to use C++ to model financial instruments: Bonds, Stocks, 

Forwards, Futures, Options and Swaps.  This paper concentrates on Options and 
present an hierarchy of classes to model European Options. Based on Black Scholes 
extended mathematical model, we calculate the price for Call and Put Option and 
some measures for sensitivities of the price: delta, gamma, vega, theta and rho. 
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1. Introduction 
 

Most books that discuss financial instruments provide only a theoretical 
understanding of them as well as their mathematical derivations. While many 
papers provide numerical results, few supply the details for how to implement the 
model in real life. 

In quantitative finance, most numerical work is done with Excel, MatLab, 
Mathematica, C++, Visual Basic or Java, but C++ is dominant. We choose C++ for 
implementing financial models due to the language’s object-oriented features, 
speed, and reusability. 

 
2. What are Options? 

 
In this section we will present some result necessary for the rest of the paper. 

For a complete introduction to options see Hull (2002) and Rubinstein (1999). 
An option contract gives the owner of the contract the right, but not the 

obligation, to buy (Call Option) or sell (Put Option) a security at a specified future 
date (expiry date or maturity) for a fixed agreed price (strike price). The buyer of 
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the contract must pay the seller a fee, which is called the option price or premium.  
After the option’s expiration date (T = maturity), the contract will cease to exist. 

The price of the option is the premium. When the option is traded on an 
organized market, the premium is quoted by the market. Otherwise, the problem is 
to price the option. Also, even if the option is traded on an organized market, it can 
be interesting to detect some possible abnormalities in the market. 

Options are in many varieties. European Options can only be exercised at 
maturity T, American Options at any time before T. Option which are only 
exercisable during a predefined portion of there life of the contract are termed 
Bermudan. 

The following six factors influence the option price (Put or Call): 
• S = Spot price of the underlying asset (stock, bond, a currency and so 

on); 
• K = Strike price (the price at which the transaction is done, if the option 

is exercised); 
• T = Time to expiration of the option; 
• σ = Expected price volatility of the underlying over the life of the option; 
• r = risk-free rate of interest; 
• q or f =  dividends or foreign currency. 
There are two main problems about option: option pricing (evaluation of 

Premium) and how sensitive the price of an option is to a change in any one of the 
factors that affect its price.  

From the definition of the options, it is clear that at their last possible 
exercise date, the maturity date, the buyer has cash flows: max (S-K, 0) for Call 
and max (K-S, 0) for Put. 

The question is what formula to use prior to expiration? 
Several models have been developed to determine the theoretical value of an 

option. The most popular one was developed by Fischer Black and Myron Scholes 
(1973) for valuing European call options.  

The classical Black-Scholes model could only be used to value European 
options (Put or Call) on underlying instruments, which do not generate a cash flow, 
non-dividend paying stocks. The assumptions used for original Black-Scholes 
model are: 

• the asset price follows the lognormal distribution; 
• the underlying asset pays no dividends during the life of the option; 
• there are no arbitrage possibilities; 
• transactions cost and taxes are zero; 
• the risk-free interest rate and the asset volatility are known functions of 

time over the life of the option; 
• there are no penalties for short sales of stock; 
• the market operates continuously and the share prices follow a 

continuous Ito process. 
Black-Sholes model was modified by Merton (1973) to work on stock indices 

with known dividend q, Garman and Kohlhagen (1983) for option on foreign 
currency f , and Black (1976) for option on future. 

The classical Black-Scholes model uses five parameters for option pricing S, 
K, T, σ, r, but we expand the model with a new parameter b = cost of carry. 

 



3. Black-Scholes extension model 
 
We introduce the generalized Black–Scholes formula to calculate the price of 

a call or put option on some underlying asset. In general, option price is a function 
f( S, K, T, r, σ, b ). The exact formula for C = Call or P = Put is given by (1)-(4): 
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N(.) = the cumulative normal distribution 
 
We can do as particular to obtain a specific model. When: 
B = r   Black-Scholes (1973) Stock Option Model; 
B = r - q  Merton (1973) Stock Option Model − continuous dividend yield q; 
B = 0.0  Black (1976) Futures Option Model; 
B = r – f  Garman-Kohlhagen (1983) Currency Option Model. 
To view how sensitive is the price of an option to a change in any one of the 

factors that affect its price, we can calculate: 
• delta − Sensitivity to change in the underlying spot price; 
• gamma − option delta's sensitivity to market price changes; 
• theta − Sensitivity to time to maturity; 
• vega − Change in value for a change in the underlying’s volatility; 
• rho − Change in value for a change in interest rates. 

 
4. C++ classes to model European Options 
 
In this section we wish to describe how we have applied this body of 

knowledge to produce a software system that is able to price European Option. 
We start by creating an Abstract Base Class from which specific instruments 

will be derived: Bonds, Stocks, Forwards, Futures, Options, Swaps an so on. 
Classes must be related in a hierarchy that moves from general to the specific: 

class FinancialInstrument 
{ // Abstract Base Class for all financial instruments 
}; 
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Because many financial models use statistical distributions, we can make a 
library with all the necessary functions.  Here we use namespace to group together 
two Gaussian functions and a record for parameters: 

using namespace std; 
namespace library 
{ 
  struct  OptionParameters 
  { 
  double S ;  // Price for underlying asset 
  double K;   // Strike price 
  double T ;  // Time to maturity (in fractional years) 
  double r;   // Interest rate 
  double sigma;  // Volatility 
  double b;   // Cost of carry 
  string optionType; // Option name (Call, Put) 
  string UName;       // Underlying asset name 
  }; 
  double  n(const double&  x) 
  { // The normal distribution function 
    return 0.398942280401433*exp(-0.5*x*x); 
  } 
  double  N(const double&  x) 
  { // The approximation to the cumulative normal distribution 

//  see  Abramowitch, M. and L.A. Stegun (1972) 
  double a1=0.4361836, a2=-0.1201676, a3=0.9372980; 
  double k=1.0/(1.0 + (0.33267 * x)); 
  if (x >=0.0) 
    return 1.0 - n(x)* (a1*k + (a2*k*k) + (a3*k*k*k)); 
    else  return 1.0 - N(-x); 
  } 
}; 
 
We can replace the parameter of Gaussian functions by double x, but for 

efficiency, argument x is given as constant reference. 
Option is implemented as a new class deriving from FinancialInstrument. 

The data in the base class is declared as protected because we wish to be able to 
access this data in derived classes (EuropeanOption, AmericanOption and so on). 

Having defined the object’s data we must extract information from the object. 
Because it is possible for a single instrument to be priced in different ways, we 
make virtual Price() and Payoff(). To set or to extract protected data in the child 
class, we have created two virtual function Set() and Show(). 

using namespace  library; 
class   Option:  public  FinancialInstrument 
{// Abstract Base Class for all options (European, American, …) 
protected: 
  double S, K, T, r, sigma, b; 
  string optionType, UName; 
public: 
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  virtual double Price() const=0;   // option price 
  virtual double PayOff() const=0;  // payments balance 
  virtual OptionParameters Show() const=0; 
  virtual void Set(const OptionParameters& p)=0; 
}; 
A derived class EuropeanOption, add functionality beyond that of the base 

class, and override methods of its base class. Price() implements the analytic 
Black-Scholes formula for European options and with  method switchType() we 
can change option type.  Also, we added methods to calculate parameters for 
sensitivies: Delta(), Gamma(), Vega, Theta(), Rho(). 

class EuropeanOption: public Option 
{ 
public: 
  EuropeanOption();   // constructor, default 
  EuropeanOption(const EuropeanOption& o);  // Copy constructor 
  void copy(const EuropeanOption& o); 
  virtual ~EuropeanOption(); 
  EuropeanOption& operator = (const EuropeanOption& o); 
  double Price () const; 
  double PayOff() const; 
  void switchType();  // Change "Call" to "Put" and revers 
  void Set(const OptionParameters& p) ;    // modifiers 
  OptionParameters Show() const; 
  // Functions that calculate sensitivities 
  double Delta() const; 
  double Gamma() const; 
  double Vega () const; 
  double Theta() const; 
  double Rho() const; 
}; 
The necessary code to implement these classes is presented below. 
EuropeanOption::EuropeanOption() 
{// Initialise default values (original Black-Scholes) 
  r=0.08;     sigma= 0.30;     K=65.0; 
  T=0.25;    S=60.0;         b=r; 
  optionType = "Call";           UName = "stock"; 
 } 
void EuropeanOption::copy(const EuropeanOption& o) 
{ 
  r =o.r;  sigma=o.sigma;  K=o.K;  T=o.T;  S=o.S;  b=o.b; 
  optionType=o.optionType;  UName=o.UName; 
} 
EuropeanOption::EuropeanOption(const EuropeanOption& o) 
{  copy(o); } 
EuropeanOption& EuropeanOption::operator=(const EuropeanOption& o) 
{ 
  if (this==&o) return *this; 
  copy(o); 
  return *this; 
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} 
OptionParameters EuropeanOption::Show() const 
{ 
OptionParameters p; 
p.S=S;  p.K=K;  p.T=T;  p.r=r;  p.sigma=sigma;  p.b=b; 
p.optionType=optionType;  p.UName = UName; 
return p; 
} 
void EuropeanOption::Set(const OptionParameters& p) 
{ 
S=p.S;   K=p.K;  T=p.T;  r=p.r;  sigma=p.sigma;  b = p.b; 
optionType=p.optionType;  UName=p.UName; 
} 
EuropeanOption::~EuropeanOption(){} 
double EuropeanOption::Price() const 
{ 
  double d1, d2, aux, price=0.0; 
  aux=sigma * sqrt(T); 
  d1 = (log(S / K) + (b + (sigma*sigma)* 0.5) * T)/aux; 
  d2 = d1 - aux; 
  if ( optionType == "Call" ) 
    price = S * exp((b - r) * T) * N(d1) - K * exp(-r * T) * N(d2); 
  else if ( optionType == "Put" ) 
    price = K*exp(-r * T)*N(-d2) - S*exp((b - r)*T)*N(-d1); 
  return price; 
} 
 
double EuropeanOption::PayOff() const 
{ 
  double payoff=0.0; 
  if (( optionType=="Call" ) && (S >K))  payoff=S - K; 
  if (( optionType=="Put" )  &&  (K>S))  payoff=K - S; 
  return payoff; 
} 
double EuropeanOption::Delta() const 
{ 
  double d1, aux, delta=0.0; 
  aux = sigma * sqrt(T); 
  d1 = ( log(S/K) + (b+ (sigma*sigma)*0.5 ) * T )/ aux; 
  if ( optionType == "Call" ) delta = exp((b-r)*T) * N(d1); 
    else if ( optionType == "Put" )  delta = exp((b-r)*T) * (N(d1) - 1.0); 
  return delta; 
} 
double EuropeanOption::Gamma() const 
{ 
  double d1, aux; 
  aux = sigma * sqrt(T); 
  d1 = ( log(S/K) + (b + (sigma*sigma)*0.5 ) * T )/ aux; 
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  return ( n(d1) * exp((b-r)*T) ) / (S * aux); 
} 
 
double EuropeanOption::Vega() const 
{ 
  double d1, aux=sigma*sqrt(T); 
  d1 = ( log(S/K) + (b + (sigma*sigma)*0.5 ) * T )/ aux; 
  return (S * exp((b-r)*T) * n(d1) * sqrt(T) ); 
} 
 
double EuropeanOption::Theta() const 
{ 
  double d1, d2, t1, t2, t3, theta=0.0, aux=sigma*sqrt(T); 
  d1 = ( log(S/K) + (b + (sigma*sigma)*0.5 ) * T )/ aux; 
  d2 = d1 - aux; 
  t1 =  (S * exp((b-r)*T ) * n(d1) * sigma * 0.5 )/ sqrt(T); 
  t2 =  (b-r)*(S * exp((b-r)*T) * N(d1)); 
  t3 =  r * K * exp(-r * T) * N(d2); 
  if ( optionType == "Call" )  theta = -(t1 + t2 + t3); 
  t2 =  (b-r)*(S * exp((b-r)*T) * N(-d1)); 
  t3 =  r * K * exp(-r * T) * N(-d2); 
  if ( optionType == "Put" )  theta =  t2 + t3 - t1; 
  return theta; 
} 
double EuropeanOption::Rho() const 
{ 
  double d1, d2, t1, t2, t3, rho=0.0, aux=sigma*sqrt(T); 
  d1 = ( log(S/K) + (b + (sigma*sigma)*0.5 ) * T )/ aux; 
  d2 = d1 - aux; 
  if ( optionType == "Call"  && b != 0.0 ) 
  rho = T * K * exp(-r * T) * N(d2); 
  if (( optionType == "Put" ) && (b != 0.0)) 
  rho = - T * K * exp(-r * T) * N(-d2); 
  if (b == 0.0)  rho = - T * Price(); 
  return rho; 
} 
void EuropeanOption::switchType() 
{ 
  if (optionType == "Call") optionType = "Put"; 
    else optionType = "Call"; 
} 

 
5. Summaries and conclusion 

 
One of the two objectives of this paper was to present the theory of options 

and how could be priced.  
The second objective of this work was to model European Option with C++ 

classes. The source code was compiled with Borland C++ Builder and it is entirely 
presented here, in order to allow readers to replicate and validate these results. 
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To illustrate the applicability of our design, the results are shown below. 
We take the following example (original Black-Scholes model): 
 

S = 60.0  K = 65.0  T = 0.25(three months) 
R = 0.08   σ = 0.30  b = r = 0.08 
optionType = “Call”   UName = “stock” 
 
The outputs of the software are: 

Call price = 2.13 and for sensitivities of the price: 
Delta = 0.37; 
Gamma = 0.04; 
Vega = 11.35; 
Theta=-8.43; 
Rho=5.05. 
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