

ALGORITHM AND PROGRAM TO DETERMINE THE
ORDER OF A POINT ON AN ELLIPTIC CURVE

DOCHIŢOIU, Ştefan

Hyperion University,
stefan.dochitoiu@yahoo.ca

Abstract
This work presents an iterative algorithm and a program for obtaining the

order of a point on an elliptic curve over a finite field. Details are given based on the
Mathematica integrated development environment.

Key-words: cyclic group, order of points, elliptic curve

AMS classification: 12E30

1. Introduction

Let K be a field. An elliptic curve over K is the set of points from K×K each of
them verifying an equation of form:

y2=x3+a x+b, (1)

where the parameters a, b∈ K are such as the polynomial x3+ax+b does not allow
multiple roots. This field has an abelian group structure (in additive notation).

The aim of this work is to elaborate an iterative algorithm and program to
determinate the order of an arbitrary element of the elliptic curve case of K=Zp. The
results of the program for this case apply in the domain of cryptography. First we
will present certain aspects regarding elliptic curves in the plane R2.

2. Case of K=R

In case K=R, the set of the points defined by the equation (1) has this graphic:
The composition operation (addition) of the curve points is done like this:

given two points P1 and P2 on the curve, the straight determined by P1(x1,y1) and
P2(x2,y2) join the curve for the third time in point P(x3,y3). The composition P1+P2
of those two points is by definition the point P3(x3, −y3), the symmetric of P against
the horizontal axis.

The point of null effect of the curve is a conventional point, which is not
expressible in coordinates and named the point from infinite, notated with O, to the
vertical axis direction. By convention, the composition with this point is: O + P = P,

 35

whatever is the point P on the curve. The opposite –P of the point P(x, y) of the
curve is the symmetric of P against the horizontal axis (having the coordinates x
and −y), which is located on the curve as well.

Fig. 1.

We will deduce the calculus formulas for the coordinates x3 and –y3 of the

point P1+P2 function of the coordinates x1, y1, respectively x2, y2 of the points P1
and P2. For the beginning, we consider the case when x1 is not equal with x2. The
straight line determinated by the points P1 and P2 has the equation:

1
12

12
1

12

12 y
xx
yyx

xx
yyxy +

−
−

−
−
−

= .

We replace y in equation (1) and obtain the three degree equation in x:

baxxy
xx
yy

x
xx
yy

x ++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

−
−
− 3

2

1
12

12
1

12

12

The coefficient of x2 is:
2

12

12
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

xx
yy and represents the sum of the three roots

(according to the Viète relations), two of those being known, namely as x1 and x2.
So,

21

2

12

12
3321

2

12

12 xx
xx
yy

xxxx
xx
yy

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⇒++=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

 36

and

1
12

12
1

12

12
33 y

xx
yyx

xx
yyxy +

−
−

−
−
−

= .

Thus the coordinates of the point P1+P2 are:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−
−
−

−−=−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

)(13
12

12
13

21

2

12

12
3

xx
xx
yyyy

xx
xx
yyx

 (2)

If the points P1 and P2 are identical (we denote P0=P1=P2) then the tangent to

the curve in the point P0 should be in place of the straight P1P2. Taking into
account that the curve equation is written on the form: F(x, y) = 0 (in
which), the tangent in point PbxaxyyxF −−−= 32),(0 has the following equation:

0)()(0
'

0
'

00
=−+− yyFxxF yx .

where,),(),,(00
'

00
'

00
yxF

y
FyxF

x
F yx ∂

∂
=

∂
∂

=

Thus we obtain the tangent to the curve in point P0 equation,
 with 0)(2))(3(000

2
0 =−+−−− yyyxxax 00 ≠y those intersection with the

curve is obtained replacing)(
2

3
0

0

2
0

0 xx
y

ax
yy −

+
+= into the curve equation.

This way we obtain the three degree equation:

0)(
2

3 3
2

0
0

2
0

0 =−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
+ bxaxxx

y
ax

y

with two known roots, namely x1 = x2 = x0. Using again the first Viète formula one

obtains:
2

0

2
0

0 2
3

'2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=+

y
ax

xx , which gives 0

2

0

2
0 2

2
3

' x
y

ax
x −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
= , where we

denoted x' the abscise of the point 2P0=P0+P0. The ordinate y' will

be)'(
2

3
' 0

0

2
0

0 xx
y

ax
yy −

+
+=

So,

 37

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
+

−−=

−
+

=

)(
4

)3(
'

2
4

)3(
'

032

22
0

0

02

22
0

xx
y

ax
yy

x
y

ax
x

. (3)

For every natural non-zero number k we denote Pk=k P0. The point P1 has the

coordinates x1 = x0, y1 = y0, P2 have the coordinates x2 = x', y2 = y'. For k the
following recurrent formulas are to be used:

3≥

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−
−
−

−−=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

++

+

)(01
0

0
01

0

2

0

0
1

xx
xx
yy

yy

xx
xx
yy

x

n
n

n
n

n
n

n
n

, 1...,,2 −=∀ kn . (4)

At the moment when xn = x0 is obtained the recurrent formulas (4) could not

be applied, but, yet, we obtained the order of P0; namely it is n+1. Indeed, if xn=x0
then yn=−y0 and then Pn=n P0=−P0. That means (n+1)P0 is the null element of the
elliptic curve. Certainly n+1 is the smallest natural number with this property, so
n+1 is the order of P0.

3. The supplied program for calculating the order of a curve point p0
 (case of K=Zp)

For resolving the problem I used the programming IDE Mathematica –

version 4.0. Now we continue by presenting the source code. Some comments at
the source code referring to the functions to be used are included.

/*COMMENT*/ is a markup tag that I used it here to demark the comments. The
syntax of Mathematica 4.0 does not allow this markup tag but I used it here in the
paper to give explanations at certain places into the source code.

/*
HERE IT IS A SUMARY FOR THE FUNCTIONS SUPPLIED BY THE MATHEMATICA

IDE, NAMELY THOSE FUNCTIONS THAT OCCUR IN MY SOURCE CODE
 (These functions haven't here a complete presentation but I tried to cover the

needs of present work).
 − Mod[a,b] Function taking two integer arguments (a and b). It returns the
rest to the division of a by b.
 − FullSimplify[expression] It searches in a set as large as possible of
expressions that are equivalent with expression, the simplest expression and
returns that expression.
 − (++ and --) Increments, respectively decrements, an integer value.
 − Sort[list] Sorts the list list according to the canonical order.

 38

 39

 − Table[EPRESSIONoFi,{i,k}] Creates a list formed with successive
evaluations to the expression EPRESSIONoFi for i=1, 2, 3, …, k (in this order).
 − Infixed form for arithmetic or relational operators are, each of them,
nothing but forms equivalent with applying certain functions with operands
passed to them as arguments.
 For instance:
 I. The infixed operator "/" (example a/b) is nothing but the function
Rational[a,b] which returns the division of a by b.
 II. The comparison operator "==" (example a==b). For the usage of
this work it tests the equality of two numbers. It is nothing but the function
Equal[a,b] which returns the logic value True for case of a is equal to b and
the logic value False when a and b are not equal.
 − Protect[symbol] confer to the symbol symbol the quality of being
"Protected". This quality communicates to the Mathematica system to avoid any
changes that would be intended to be done over the definition of the symbol
symbol. There is a single exception for this rule of the "Protect" quality, namely
the "Unprotect" function effect. Such quality settings, done either by the
programmer or by the Mathematica system (for the symbols charged with
features those the system supplies) are called "Attributes". For instance, the
symbol "Rational" has the attribute "Protected".
 − Unprotect[symbol] cancels the attribute "Protected" for the symbol symbol.
 − MapAll[function,expression] With arguments of this kind, "MapAll" applies
the function function to each sub expression of the expression expression and
evaluates the new expression obtained this way. MapAll[function,expression]
could be written in the equivalent manner: function //@ expression.
 − Divide[a,b] has the same definition as Rational[a,b].
 − For[] Function to realize iterative expressions evaluations.
 − If[] Function for expressions conditional evaluation or choose between two
evaluations alternatives.
 − list[[i]] Returns the position i element in list list.
 − Part[expression,i1 , i2 , i3 , …] is the equivalent form to the expression
expression[[i1]] [[i2]] [[i3]]…
 − length[list] If the argument is a list, the function returns the number of the
list's elements (that is to say the length of the list).
 − Append[list,element] Adds to the list list the element element as the last
element of the list and returns the obtained list.

FORMATTING CONVENTIONS FOR IDENTIFIERS THAT OCCUR INTO THE

SOURCE CODE

 For formal parameters into the functions’ definition and system-supplied
functions should be used straight letters; for any other identifiers the italic
formatting should be used.
 Also we mention that every formatting that is done in this paper could be
done inside a Mathematica 4.0 session as well.
 Given x0 and y0 the Mathematica system finds, by evaluating the below
expressions, the order of an element in the elliptic curve group, namely n+1

where n is the greatest number such as the recurrent relations (4) make sense.
The program could be applies for K=Zp with no other logic restrictions over the
chosen p but p should be a prime natural number. For this work exposition we
put p=101. Also into the next code there are the following numerical settings:
x0=2 (understood as being 2 modulo p) and y0=39 (understood as being 39
modulo p). These x0 and y0 verify equation (1)
 */

P=101;
Unprotect[Rational];
Rational[a_Integer, b_Integer]:= Mod[a,p]*PowerMod[b,-1,p];
Protect[Rational];
Mod[x_Integer]:=Mod[x,p]
a=-1; b= 0;

x’:= x
y

ax
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
02

0

22
0 2
2

)3(
mod//@

y’:= xx
y

ax
yfyFullSimpli ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
−− 02

0

22
0

0 '(
2

)3(
 mod//@

x1 := x0; y1 := y0; x2 := x’; y2 := y’;

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

= ux
xu
yv

vux 0

2

0

0mod//@:_)_,(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

−−=)(mod//@:_)_,_,(0
0

0
0 xxuv

xu
yv

yxuvvux

F:=(u=x2; v=y2; n=2;
While[Mod[u-x+0+, p] ≠ 0,
 xx = x[u, v];
 yy =y[u, v, xx];
 u = xx; v = yy; n++]; n+1)

After the above evaluations have been done, the evaluation of the expression

"f" gives the number 52 as the result and this is the order of the point whose
coordinates are x0=2 and y0=39. We remark that the point order should divide the
elliptic curve group order whatever be the point (according to Lagrange Theorem).

Based on this remark the evaluation of the next expressions written below
represents a more consistent test of the prior source code.

/*Let g=7 be the generator of the multiplicative group of Zp with p=101*/
g=7;
/*
Into the variable t1 is recorded the sorted list of all modulo p elements that could
be written on the form x3−x, where x is a modulo p element too.
*/

 40

 41

t1 = Sort[Table[{ Mod[x^3 −x,p],x},{x, p −1}]]

/*
Into the variable t1 is recorded the sorted list of all modulo p elements that are
perfect squares in modulo p .
*/

t2 = Sort[Table[{Mod[g^(2*i),p],2*i },{ i , Divide[p-1,2] }]]

\/*
 Next program finds and records into the variable txy the list of all coordinates
pairs {x,y} for which y2 is in list t2 such as x and y verify equation (1).
 */

lst12 = {};
l1 =Length[t1] ; l2 = Length[t2];
t =Table[Equal[t1[[i]] [[1]],t2[[j]] [[1]]],{ i , l1 },{ j , l2 }];
For[i =1, i <= l1 , i++,
 For[j =1 , j <= l2, j++,
 If[t[[i]] [[j]] , lst12=Append[lst12 , { i , j }]
]
]
];
lst12;
tper = Table[{Mod[g^Divide[t2[[lst12[[i]] [[2]]]] [[2]] , 2] , p] ,
 t1[[lst12[[i]] [[1]]]] , t2[[lst12[[i]] [[2]]]] } , { i ,Length[lst12] }];
txy = Table[{ Part[tper, i , 2, 2],Part[tper, i , 1]} , { i , Length[tper] }]

After all of the above Mathematica expressions have been evaluated, this is

the "txy" evaluation result:

{{20,100},{89,100},{93,100},{2,39},{63,3},{9,35},{42,35},{50,35},{35,97
},{5,76},{29,76},{67,76},{91,90},{22,83},{56,27},{58,86},{3,78},{23,78},
{75,78},{7,72},{49,6},{77,21},{21,7},{33,7},{47,7},{54,70},{68,70},{80,7
0},{24,93},{52,41},{94,88},{26,73},{78,73},{98,73},{43,49},{45,68},{79,
22},{10,92},{34,53},{72,53},{96,53},{66,40},{51,54},{59,54},{92,54},{38
,71},{99,87},{8,10},{12,10},{81,10}}

The cardinal of prior list of pairs could be easily found by the expression

Length[txy]. Its evaluation result is 50. The elliptic curve group order finding
requires to be added at the above list the following elements:

− For each recorded y (modulo p) in form of pairs {x, y} (as coordinates
of the elliptic curve points P), it should be added the pair of coordinates {x,
−y} representing the coordinates of the points P(x, −y)= −P. After that, we
note, we obtained a number of 100 points.
− To these 100 points just obtained we add the null effect point, O, and
obtain 101 points.

 42

1.

2.

− Then we add at the 101 points, the elliptic curve points whose ordinate
is equal with zero (y = 0). This means finding all abscises x which satisfy
x3−x=0, equation having three roots in Zp (namely -1, 0 and 1). These totalize
a number of three points which must be added more. So we obtain the result
104 for the order of the elliptic curve group.
The calculated orders of all elements of the elliptic curve group that are

recorded into the variable txy are obtained by this evaluation:

Table[(x0=txy[[i]] [[1]] ; y0=txy[[i]] [[2]] ; f),{ i ,Length[txy]}]

The result is:

{26,26,52,52,52,52,52,52,26,52,52,52,13,52,52,4,26,26,26,52,13,52,52,26,13,26,26
,26,26,26,26,13,26,52,52,13,52,26,26,26,4,52,52,13,52,52,52,26,52,52,52,52,26}

We observe that all the numbers in the prior list divide 104.

REFERENCES

Koblitz, N., A Course in Number Theory and Cryptography, Springer Verlag
Berlin Heidelberg New York, Second Printing, 1988
Koblitz, N., Algebraic Aspects of Cryptography, Springer Verlag Berlin
Heidelberg New York, Corrected Second Printing, 1999

