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Abstract  
This work presents an iterative algorithm and a program for obtaining the 
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1. Introduction 
 

Let K be a field. An elliptic curve over K is the set of points from K×K each of 
them verifying an equation of form: 

 
y2=x3+a x+b, (1) 

 
where the parameters a, b∈  K are such as the polynomial x3+ax+b does not allow 
multiple roots. This field has an abelian group structure (in additive notation). 

The aim of this work is to elaborate an iterative algorithm and program to 
determinate the order of an arbitrary element of the elliptic curve case of K=Zp. The 
results of the program for this case apply in the domain of cryptography. First we 
will present certain aspects regarding elliptic curves in the plane R2. 
 

2. Case of K=R 
 

In case K=R, the set of the points defined by the equation (1) has this graphic:  
The composition operation (addition) of the curve points is done like this: 

given two points P1 and P2 on the curve, the straight determined by P1(x1,y1) and 
P2(x2,y2) join the curve for the third time in point P(x3,y3). The composition P1+P2 
of those two points is by definition the point P3(x3, −y3), the symmetric of P against 
the horizontal axis. 

The point of null effect of the curve is a conventional point, which is not 
expressible in coordinates and named the point from infinite, notated with O, to the 
vertical axis direction. By convention, the composition with this point is: O + P = P, 
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whatever is the point P on the curve. The opposite –P of the point P(x, y) of the 
curve is the symmetric of P against the horizontal axis (having the coordinates x 
and −y), which is located on the curve as well. 

 

 
Fig. 1. 

 
We will deduce the calculus formulas for the coordinates x3 and –y3 of the 

point P1+P2 function of the coordinates x1, y1, respectively x2, y2 of the points P1 
and P2. For the beginning, we consider the case when x1 is not equal with x2. The 
straight line determinated by the points P1 and P2 has the equation: 
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We replace y in equation (1) and obtain the three degree equation in x: 
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The coefficient of x2 is: 
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(according to the Viète relations), two of those being known, namely as x1 and x2. 
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and 
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Thus the coordinates of the point P1+P2 are: 
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If the points P1 and P2 are identical (we denote P0=P1=P2) then the tangent to 

the curve in the point P0 should be in place of the straight P1P2. Taking into 
account that the curve equation is written on the form: F(x, y) = 0 (in 
which ), the tangent in point PbxaxyyxF −−−= 32),( 0 has the following equation: 
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with two known roots, namely x1 = x2 = x0. Using again the first Viète formula one 

obtains: 
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For every natural non-zero number k we denote Pk=k P0. The point P1 has the 

coordinates x1 = x0, y1 = y0, P2 have the coordinates x2 = x', y2 = y'. For k  the 
following recurrent formulas are to be used: 
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At the moment when xn = x0 is obtained the recurrent formulas (4) could not 

be applied, but, yet, we obtained the order of P0; namely it is n+1. Indeed, if xn=x0 
then yn=−y0 and then Pn=n P0=−P0. That means (n+1)P0 is the null element of the 
elliptic curve. Certainly n+1 is the smallest natural number with this property, so 
n+1 is the order of P0. 

 
3. The supplied program for calculating the order of a curve point p0
    (case of K=Zp) 

 
For resolving the problem I used the programming IDE Mathematica – 

version 4.0. Now we continue by presenting the source code. Some comments at 
the source code referring to the functions to be used are included. 

/*COMMENT*/ is a markup tag that I used it here to demark the comments. The 
syntax of Mathematica 4.0 does not allow this markup tag but I used it here in the 
paper to give explanations at certain places into the source code. 

 
/* 
HERE IT IS A SUMARY FOR THE FUNCTIONS SUPPLIED BY THE MATHEMATICA 

IDE, NAMELY THOSE FUNCTIONS THAT OCCUR IN MY SOURCE CODE  
 (These functions haven't here a complete presentation but I tried to cover the 

needs of present work).   
 − Mod[a,b] Function taking two integer arguments (a and b). It returns the 
rest  to the division of a by b. 
 − FullSimplify[expression] It searches in a set as large as possible of 
expressions that are equivalent with  expression, the simplest expression and 
returns that expression. 
 − (++ and --) Increments, respectively decrements, an integer value. 
 − Sort[list] Sorts the list list according to the canonical order. 
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 − Table[EPRESSIONoFi,{i,k}] Creates a list formed with successive 
evaluations to the expression EPRESSIONoFi for i=1, 2, 3, …, k (in this order). 
 − Infixed form for arithmetic or relational operators are, each of them, 
nothing but forms equivalent with applying certain functions with operands 
passed to them as arguments. 
 For instance:  
  I. The infixed operator "/" (example a/b) is nothing but the function 
Rational[a,b] which returns the division of a by b. 
  II. The comparison operator "==" (example a==b). For the usage of 
this work it tests the equality of two numbers. It is nothing but  the function 
Equal[a,b] which returns the logic value True for case  of a is equal to b and 
the logic value False when a and b are not equal. 
 − Protect[symbol] confer to the symbol symbol the quality of being 
"Protected". This quality communicates to the Mathematica system to avoid any 
changes that would be intended to be done over the definition of the symbol 
symbol. There is a single exception for this rule of the "Protect" quality, namely 
the "Unprotect" function effect. Such quality settings, done either by the 
programmer or by the Mathematica system (for the symbols charged with 
features those the system supplies) are called "Attributes". For instance, the 
symbol "Rational" has the attribute "Protected". 
 − Unprotect[symbol] cancels the attribute "Protected" for the symbol symbol. 
 − MapAll[function,expression] With arguments of this kind, "MapAll" applies 
the function function to each sub expression of the expression expression and 
evaluates the new expression obtained this way. MapAll[function,expression] 
could be written in the equivalent manner: function //@ expression. 
 − Divide[a,b] has the same definition as Rational[a,b]. 
 − For[] Function to realize iterative expressions evaluations. 
 − If[] Function for expressions conditional evaluation or choose between two 
evaluations alternatives. 
 − list[[i]] Returns the position i element in list list. 
 − Part[expression,i1 , i2 ,  i3 , …] is the equivalent form to the expression 
expression[[i1]] [[i2]] [[i3]]… 
 − length[list] If the argument is a list, the function returns the number of the 
list's elements (that is to say the length of the list). 
 − Append[list,element] Adds to the list list the element element as the last 
element of the list and returns the obtained list. 

 
FORMATTING CONVENTIONS FOR IDENTIFIERS THAT OCCUR INTO THE 

SOURCE CODE 
 
 For formal parameters into the functions’ definition and system-supplied 
functions should be used straight letters; for any other identifiers the italic 
formatting should be used. 
 Also we mention that every formatting that is done in this paper could be 
done inside a Mathematica 4.0 session as well. 
 Given x0 and y0 the Mathematica system finds, by evaluating the below 
expressions, the order of an element in the elliptic curve group, namely n+1 



where n is the greatest number such as the recurrent relations (4) make sense. 
The program could be applies for K=Zp with no other logic restrictions over the 
chosen p but p should be a prime natural number. For this work exposition we 
put p=101. Also into the next code there are the following numerical settings: 
x0=2 (understood as being 2 modulo p) and y0=39 (understood as being 39 
modulo p). These x0 and y0 verify equation (1) 
 */ 

P=101; 
Unprotect[Rational]; 
Rational[a_Integer, b_Integer]:= Mod[a,p]*PowerMod[b,-1,p]; 
Protect[Rational]; 
Mod[x_Integer]:=Mod[x,p] 
a=-1; b= 0; 
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F:=(u=x2; v=y2; n=2; 
While[Mod[u-x+0+, p] ≠ 0, 
  xx = x[u, v]; 
  yy =y[u, v, xx]; 
  u = xx; v = yy; n++]; n+1) 
   
After the above evaluations have been done, the evaluation of the expression 

"f" gives the number 52 as the result and this is the order of the point whose 
coordinates are x0=2 and y0=39. We remark that the point order should divide the 
elliptic curve group order whatever be the point (according to Lagrange Theorem). 

Based on this remark the evaluation of the next expressions written below 
represents a more consistent test of the prior source code. 
 
/*Let g=7 be the generator of the multiplicative group of Zp with p=101*/ 
g=7;   
/*  
Into the variable t1 is recorded the sorted list of all modulo p elements that could 
be written on the form x3−x, where x is a modulo p element too. 
*/ 
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t1 = Sort[Table[ { Mod[x^3 −x,p],x},{x, p −1}  ]  ] 
 
/*  
Into the variable t1 is recorded the sorted list of all modulo p elements that are 
perfect squares in modulo p . 
*/ 
 
t2 = Sort[Table[{Mod[g^(2*i ),p],2*i },{ i , Divide[p-1,2]  }  ]   ] 
 
\/*  
 Next program finds and records into the variable txy the list of all coordinates 
pairs {x,y} for which y2 is in list t2 such as x and y verify equation (1). 
 */ 
 
lst12 = {}; 
l1 =Length[ t1 ] ; l2 = Length[ t2 ]; 
t =Table[Equal[ t1[[ i ]] [[1]],t2[[ j ]] [[1]]  ],{ i , l1 },{ j , l2 } ]; 
For[ i =1, i  <= l1 , i++, 
    For[ j =1 , j <= l2, j++, 
      If[ t[[ i ]] [[ j ]] , lst12=Append[ lst12 , { i , j }] 
        ] 
      ] 
    ]; 
lst12; 
tper = Table[ {Mod[ g^Divide[ t2[[ lst12[[ i ]] [[2]] ]] [[2]] , 2] , p] ,  
 t1[[ lst12[[ i ]] [[1]] ]] , t2[[lst12[[ i ]] [[2]] ]] } , { i ,Length[ lst12 ]  }  ]; 
txy = Table[ { Part[ tper, i , 2, 2],Part[tper, i , 1]} , { i , Length[tper ]  }  ] 

 
 
After all of the above Mathematica expressions have been evaluated, this is 

the "txy" evaluation result: 
 
{{20,100},{89,100},{93,100},{2,39},{63,3},{9,35},{42,35},{50,35},{35,97
},{5,76},{29,76},{67,76},{91,90},{22,83},{56,27},{58,86},{3,78},{23,78},
{75,78},{7,72},{49,6},{77,21},{21,7},{33,7},{47,7},{54,70},{68,70},{80,7
0},{24,93},{52,41},{94,88},{26,73},{78,73},{98,73},{43,49},{45,68},{79,
22},{10,92},{34,53},{72,53},{96,53},{66,40},{51,54},{59,54},{92,54},{38
,71},{99,87},{8,10},{12,10},{81,10}} 
 
The cardinal of prior list of pairs could be easily found by the expression 

Length[txy]. Its evaluation result is 50. The elliptic curve group order finding 
requires to be added at the above list the following elements: 

− For each recorded y (modulo p) in form of pairs {x, y} (as coordinates 
of the elliptic curve points P), it should be added the pair of coordinates {x, 
−y} representing the coordinates of the points P(x, −y)= −P. After that, we 
note, we obtained a number of 100 points. 
− To these 100 points just obtained we add the null effect point, O, and 
obtain 101 points.  
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1. 

2. 

− Then we add at the 101 points, the elliptic curve points whose ordinate 
is equal with zero (y = 0). This means finding all abscises x which satisfy 
x3−x=0, equation having three roots in Zp (namely -1, 0 and 1).  These totalize 
a number of three points which must be added more. So we obtain the result 
104 for the order of the elliptic curve group. 
The calculated orders of all elements of the elliptic curve group that are 

recorded into the variable txy are obtained by this evaluation: 
 
Table[(x0=txy[[ i ]] [[1]] ; y0=txy[[ i ]] [[2]] ; f ),{ i ,Length[txy]}] 
 
The result is: 

{26,26,52,52,52,52,52,52,26,52,52,52,13,52,52,4,26,26,26,52,13,52,52,26,13,26,26
,26,26,26,26,13,26,52,52,13,52,26,26,26,4,52,52,13,52,52,52,26,52,52,52,52,26} 

 
We observe that all the numbers in the prior list divide 104. 
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